| Name:                                                      |                              |       |                       |             |  |
|------------------------------------------------------------|------------------------------|-------|-----------------------|-------------|--|
| Instructor:                                                |                              |       |                       |             |  |
| Section/Co                                                 | llege:                       | _     |                       |             |  |
| Major: 🗖                                                   | Electrical Engineering       |       | Computer Engineering  | (Check one) |  |
|                                                            | <b>Electrical Engineerin</b> | g Ad  | vancement Exam II     |             |  |
| SPRING SEMESTER 2021                                       |                              |       |                       |             |  |
| CLOSED BOOK, CLOSED NOTES                                  |                              |       |                       |             |  |
| <u>2 HOUR TIME LIMIT</u>                                   |                              |       |                       |             |  |
| CALCULATORS ARE ALLOWED                                    |                              |       |                       |             |  |
| (calculators without communication capability only)        |                              |       |                       |             |  |
|                                                            | ELECTRONIC DEVICES WITH      | СОМ   | MUNICATION CAPABILITY |             |  |
|                                                            | MAY NOT BE USED DU           | JRING | THE EXAMINATION       |             |  |
| (electronic devices such as cell phone, pagers, and iPads) |                              |       |                       |             |  |
|                                                            | (If such devices             | ring  | or are visible,       |             |  |

## a 10% penalty will be given for the first occurrence and exam failure for the second.)

There are 10 problems: please look over the exam to make sure that you have 10 different problems. **Do any eight (8) problems!** Draw a large X through the two problems that you do not want to be graded. If you do not indicate which problems you want to leave out, the first 8 problems will be graded.

Do all work for each problem only on the page supplied for that problem (you may use both sides). **DO NOT**, for instance, continue Problem #3 on the back of Problem #2. Extra blank paper will be supplied if needed. If extra paper is used, show the additional work for each problem on a separate sheet, write your name and problem number on the sheet, and staple the extra sheet(s) to the appropriate problems.

- (1) The transfer function for a particular circuit is  $H(s) = \frac{\mathbf{V}_{out}}{\mathbf{I}_{in}} = \frac{10s^2}{(s+3)(s+2+j)(s+2-j)}$ .
  - a. What are the units of the transfer function? (1 pt.)
  - b. Sketch and label the pole-zero plot. (8 pts.)
  - c. Find the particular solution, v<sub>out</sub>(t), given the following input:  $i_{in}(t) = 10e^{-t}\cos(5t + 45^{\circ})$ A. (10 pts.)
  - d. Determine the differential equation with relates the input and output. (6 pts.)



differential equation:

 $v_{out}(t) =$ 



(2) In the following filter,



- a. Determine the magnitude of the transfer function,  $|H(j\omega)|$  in terms of R, L, C and  $\omega$ . (10 pts.)
- b. Determine |H(j0)| and  $|H(j\infty)|$ , the asymptotic behavior of the amplitude response. (4 pts.)
- c. Given that  $R=5 \Omega$ , calculate the values of L and C necessary if the bandwidth is to be 2000 rad/sec and the center frequency is to be 40,000 rad/sec. (10 pts.)
- d. What type of filter is this: low-pass, high-pass, band-pass or band-reject? (1 pt.)

 $|H(j\omega)| =$ \_\_\_\_\_

 $|H(j\infty)| =$ \_\_\_\_\_

- Γ=\_\_\_\_
- C = \_\_\_\_\_

| Filter type (circle one): | low-pass | high-pass | band-pass | ł |
|---------------------------|----------|-----------|-----------|---|

band-reject



(3) Write a set of phasor mesh current equations for the circuit to find  $I_1$ ,  $I_2$ , and  $I_3$  in matrix form. You must eliminate the control variables from your equations. Do not solve.







(4) Calculate the open circuit voltage,  $V_{th}$  or  $V_{AB}$ , for the given circuit.



 $\mathbf{V}_{\mathbf{th}} = \mathbf{V}_{\mathbf{AB}} =$ 



| Iname | Ν | ame |
|-------|---|-----|
|-------|---|-----|

(5) For the following circuit, determine v(t) using superposition.



(6) A single-phase load draws 70  $A_{rms}$  at a power factor of 0.60 lagging from a 240- $V_{rms}$  60-Hz power line. To reduce the effective current drawn from the power line, a capacitance is placed in parallel with the load.

- a. Find the value of capacitance necessary to increase the power factor of the load to 0.98 lagging. (15 pts.)
- b. Find the RMS current drawn from the line after the capacitance found in part a is placed in parallel with the load. (5 pts.)
- c. What should the power factor be corrected to so that the minimum current is drawn? (5 pts.)

C =\_\_\_\_\_

I<sub>rms</sub> = \_\_\_\_\_

PF =\_\_\_\_\_



- (7) Two parallel single-phase loads are supplied by a 60-Hz, 208-V<sub>rms</sub> sinusoidal source. Load 1 absorbs 300 W at a power factor of 0.70 leading Load 2 absorbs 450 VA at a power factor of 0.80. lagging.
  - a. Calculate the total complex power supplied by the source. (9 pts.)
  - b. Calculate the power factor of the combined loads. Include whether it is leading or lagging. (2 pts.)
  - c. Sketch and label the power triangle for <u>Load 1</u>. (7 pts.)
  - d. Calculate the impedance of Load 2. (7 pts.)

S<sub>total</sub> =

 $PF_{total} =$ 

Z<sub>2</sub> = \_\_\_\_\_

Power Triangle (Load 1)



(8) For the circuit below,



Write a set of mesh current equations in the matrix form. Do not solve. (25 pts)

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \\ \mathbf{I}_3 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$



\_\_\_\_

(9) For the circuit below,



Find the currents  $I_1$  and  $I_2$ . (Keep your answer in the polar form) (25 pts)

I<sub>1</sub> = \_\_\_\_\_

I<sub>2</sub> = \_\_\_\_\_



(10) A three-phase power system shown below has two loads. The  $\Delta$  –connected source is producing a line-to-line voltage of 480V and the line impedance is (0.09+*j*0.16)  $\Omega$ . Load 1 is Y-connected with an impedance of 2.5 $\angle$ 36.87° $\Omega$  and load 2 is  $\Delta$  –connected with an impedance of 5 $\angle$ -20° $\Omega$ .



a. Draw the per-phase equivalent circuit with correct values of all components. Take phase A line-to-neutral voltage to be your angle reference. (5 points)

- b. What is the magnitude of the line-to-line voltage of the two loads? (5 points)
- c. What is the magnitude of the line Current,  $I_{L1}$ ? (5 points)

d. Find the real and reactive powers supplied to each load. (10 points)