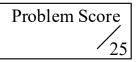
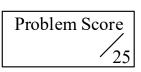
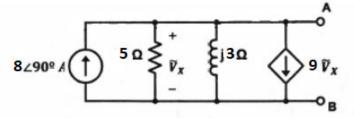

Name:			
Instructor:			
Section/College:	_		
Major: 🗖 Electrical Engineering		Computer Engineering	(Check one)
Electrical Enginee	ring Adv	vancement Exam II	
FALL	SEMESTER	R 2020	
<u>CLOSED E</u>	<u>BOOK, CLOS</u>	ED NOTES	
<u>2 H0</u>	<u>OUR TIME L</u>	<u>IMIT</u>	
CALCULA	TORS ARE	ALLOWED	
(calculators without	communio	cation capability only)	
ELECTRONIC DEVICES W	ITH COMM	IUNICATION CAPABILITY	
MAY NOT BE USED	DURING '	THE EXAMINATION	
(electronic devices such	h as cell pl	hone, pagers, and iPads)	
(If such dev	ices ring o	or are visible,	

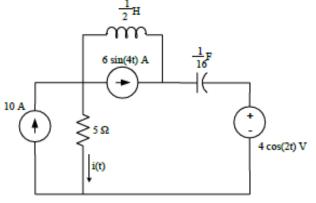

a 10% penalty will be given for the first occurrence and exam failure for the second.)

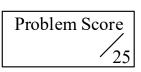
There are 10 problems: please look over the exam to make sure that you have 10 different problems. **Do any eight (8) problems!** Draw a large X through the two problems that you do not want to be graded. If you do not indicate which problems you want to leave out, the first 8 problems will be graded.

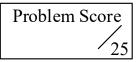

Do all work for each problem only on the page supplied for that problem (you may use both sides). **DO NOT**, for instance, continue Problem #3 on the back of Problem #2. Extra blank paper will be supplied if needed. If extra paper is used, show the additional work for each problem on a separate sheet, write your name and problem number on the sheet, and staple the extra sheet(s) to the appropriate problems.

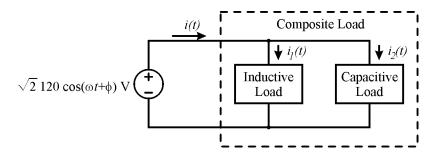
- (1) a. Write a set of mesh current equations for the circuit to find I₁, I₂ and I₃ in matrix form. You must eliminate the control variable from your equations. (**15 points**)
 - b. Solve for phasor mesh current I₂. (5 points)
 - c. Express steady state mesh current $i_2(t)$ in time domain if ω =1250 rad/s. (5 points)

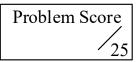




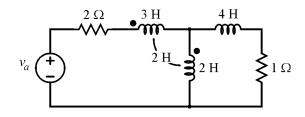

(2) Find and sketch the Thevenin Equivalent Circuit with respect to terminals A and B. Calculate the Thevenin voltage and impedance. (**25 points**)

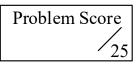

(3) For the following circuit, determine the time domain current, i(t) using Superposition. Show/draw the circuit used for each part of the solution. (25 points) $\frac{1}{2}$ H





- (4) A load draws |**S**|=10,000 VA from a 60-Hz sinusoidal source at a power factor of 0.707 leading.
 - a. What is the average power delivered to the load? (5 points)
 - b. What is the reactive power delivered to the load? (5 points)
 - c. If $V_{rms} = 120$ volts, what is the peak current, I_m ? (5 points)
 - d. What is the complex power, \tilde{S} ? (5 points)
 - e. What is the load impedance, \tilde{Z} ? (5 points)

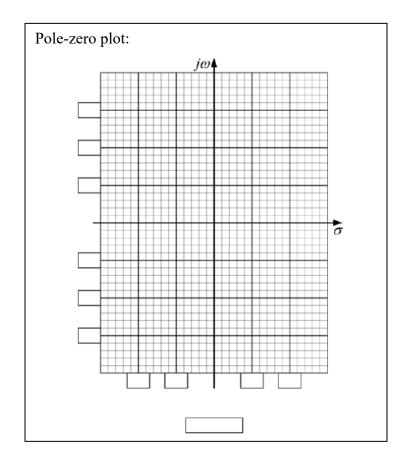



- (5) In the circuit below, an inductive load draws 1000 watts at power factor, PF = 0.9 lagging from a 120 V rms source. In an effort to raise the power factor seen by the source, a small capacitive load is placed in parallel with the inductive load. The capacitive load draws 10 watt at PF = 0.02 leading.
 - a. Find the complex power supplied by the source \tilde{S}_{s} . (10 points)
 - b. Find the rms current supplied by the source, *I*_{rms}. (5 points)
 - c. Find the rms current supplied to the inductive load, I_{1rms} . (5 points)
 - d. Find the total impedance, \tilde{Z} , with respect to the source. (5 points)

(6) Write two mesh current equations for the following circuit with mutual inductance M = 2H as indicated in the following figure. (25 points)

Name

(7) The transfer function in s domain, H(s) of a circuit is given by

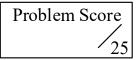

$$H(s) = \frac{I_o}{V_s} = \frac{(s+2)^2}{(s+3)(s^2+2s+10)}$$


- a. If the input $v_s(t) = 5e^{-3t}\cos(2t + 30^0)$ V, find the output $i_o(t)$. (15 points) b. Identify the location of poles and zeros and sketch the pole-zero plot for the transfer function. (10 points)

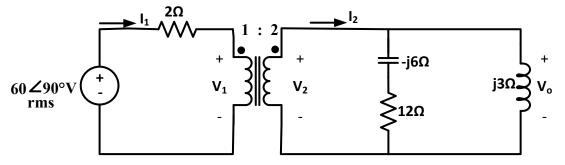
*i*_o(*t*) = _____

Location of poles:

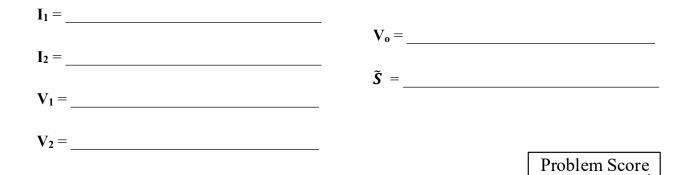
Location of zeros:


(8) The transfer function in frequency domain of a circuit, $H(j\omega)$ is given by

$$H(j\omega) = \frac{V_{out}}{I_{in}} = \frac{(1+j3\omega)}{(18-48\omega^2+j20\omega)}$$

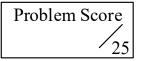

- a. Develop the second order differential equation which models the circuit. (10 points)
- b. If the input $i_{in}(t) = 50 \sin (10t + 90^{\circ})$ A, find the output $v_{out}(t)$. (15 points)

Differential Equation =

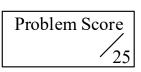


(9) For the ideal transformer circuit below,

- a. Find the currents I₁ and I₂. (10 Points)
 b. Find the voltage V₁, V₂ and V₀. (10 Points)
- c. The complex power supplied by the source \tilde{S} . (5 Points) (Note: Your answers should be in the **polar form**)



25


(10) A balanced three-phase system consists of a source with a line-to-line voltage of 210V connected to the parallel combination of a delta-load $Z_{\Delta} = 24 - j30\Omega$ and a wye-load $Z_Y = 12 + j5\Omega$ through a line impedance $Z_{line} = 1 + j1\Omega$.

- a. Draw the per-phase equivalent circuit representation. Take phase A line-to-neutral voltage to be your angle reference. (7 points)
- b. Determine the magnitude of the line current of the combined loads. (8 points)
- c. Determine the magnitude of the current flowing through the delta-connected load. (5 points)
- d. Determine the magnitude of the current flowing through the wye-connected load. (5 points)

 $|I_L| = _$ _____
