General Information for Computer Engineering (CpE) PhD Qualifying Exam
(revised in August 2021)

The Computer Engineering (CpE) Qualifying Exam is administered in two parts: a written exam and an oral exam. The objective of the written exam is to determine the students’ understanding of the fundamentals of CpE subjects and to ensure solid theoretical background to start research. The objective of the oral exam is to evaluate the students’ ability for critical thinking, problem-solving and communication required to conduct research independently. The oral exam will be administered only for the students who passed the written exam. Every PhD student is required to pass the Qualifying Exam, both written and oral exams, by the end of the second semester after completion of the M.S. degree or by the end of the fifth semester after completion of the B.S. degree.

Students who fail the Qualifying Exam on their first attempt will be given a second opportunity to pass the exam when it is given in the following semester. Students who fail the exam once and do not take the exam in the subsequent semester will no longer be considered PhD degree candidates in the ECE department. A student who fails the Qualifying Exam on two consecutive semesters may file a written petition with the ECE Graduate Studies Committee for a third attempt. The petition must include at least three faculty recommendations, documentation of academic and research progress, and documentation of extenuating circumstances. The committee will vote, by simple majority, to approve or deny the petition. If the petition is approved, it will be forwarded to the Office of Graduate Studies as a request to administer the last attempt.

• Written exam (WE) Policy and Procedures

Overall Procedure

The written exam will be normally held on the third weekend of each spring and fall semester. The written exam session is three hours long. Each student, when they register for the exam, will select four specialization areas for the written exam. Students will only be provided problems for the areas selected. Possible specialization areas that can be chosen include all emphasis areas of CpE (Computational Intelligence; Computer Architecture and Embedded Systems; Integrated Circuits and Logic Design; Networking, Security, and Dependability) and no more than one single emphasis area in electrical engineering.

The written exam problems are selected to cover fundamental materials in CpE. As a general rule, basic material from undergraduate and fundamental subjects from 5xxx-level courses will be covered. The problems are designed so that each problem should take approximately 15-20 minutes to work. The student is required to work any eight of the sixteen problems (no more than three per area). The sixteen problems will consist of four problems from each of the four areas selected. Written exam subjects and associated study guides are available in a later section.

Reference Material
The Fundamentals of Engineering (FE) Reference Handbook (NCEES, version 9.2, 2013, http://www.engineering.uco.edu/~aabuabed/index_files/FE_Handbook.pdf) will be available to each student at the exam. Only several selected sections will be provided including: Units, Conversion Factors, Mathematics, Probability/Statistics. Note that this is intended to provide only the general information including fundamental formulae, constants and mathematical tables, etc. The authors of exam problems may not utilize this Reference Handbook when they design the problems. No other reference material is allowed. The only items students are allowed to bring to the exam are pencils, pens, erasers, and calculators (without network connectivity). Extra answer sheets will be provided by the exam proctor upon request. Extra calculator batteries or other supplies will not be available from the exam proctor. In order to keep track of the amount of time remaining during the exam, each student should bring his or her own watch.

Grading Policy

Each problem on the exams will be graded by the faculty member who wrote the problem. Generally, partial credit is given. A score based on the 4.0 - 0.0 scale including all intermediate scores, e.g. 3.6, 2.7, etc., (4.0, 3.0, 2.0 and 1.0 being equivalent to the letter grades “A”, “B”, “C” and “D”, respectively), is given for each of the eight problems. The average score is determined by averaging the eight scores, respectively.

An average score of 3.0/4.0 is typically required for passing the written exam. Exam scores for each student will be reviewed by the ECE Graduate Studies Committee. The committee will determine if each student passes or fails the written exam. Students will be notified of the results of the exam, indicating “pass” or “fail”, approximately one week after the exam is given.

A student may review the graded answers only in the presence of the graduate secretary, without taking pictures, making notes nor taking the answers with the student. If the student has any question on the solution of a particular problem, it should be done in writing in the presence of the graduate secretary within one week after the results are announced. The secretary forwards the writing and the student’s answer sheet to the problem author without revealing the student’s identity. The author provides the secretary with an anonymously written explanation to be forwarded to the student by the secretary. The faculty member may choose to meet the student instead of writing.

Oral exam (OE) Policy and Procedures

Overall Procedure

Within five weeks of passing the written exam, the student’s oral exam, an oral presentation (typically one hour, but no longer than two hours), must be scheduled. The advisor must form the student’s tentative PhD graduate committee (at least three including the advisor) immediately after passing the written exam. Then, the student will notify the graduate secretary of the possible exam date/time after consulting with the committee members.

Two weeks (and no sooner) prior to the oral exam, the student will be given an assignment comprised of two journal articles relevant to the student’s potential research topic, as agreed upon by the PhD committee. During the oral exam, the student will be required to
summarize and critique these articles. The student will be given no more than 15 minutes per article to give a complete overview of its technical contents. Subsequently within the next 30 minutes, the student will be required to properly place the novelty, shortcomings, how the student’s future research fits within or builds upon the works in these articles and other pertinent issues. Each examinee is required to prepare their oral presentation material. The required format for the presentation and the evaluation items are available in a later section.

The committee will be present during the oral exam to ask questions, discuss nuances and observe student’s ability to engage in technical discussions, student’s potential for performing independent research, etc. All committee members are required to physically attend the oral exam. Under unavoidable circumstance, the committee member may join the session remotely with permission from the Graduate Coordinator. At least half of committee members must be physically attending. The advisor should not speak on behalf of the student during the exam.

Assignment Handling

The PhD graduate committee will select two journal articles suggested by the student’s advisor. Each article must be directly relevant to the potential research topic of the student and an original scholarly research paper (excluding review articles) conducted by third party researchers and published by professional societies and/or academic publishers with perceived authority (e.g. IEEE, Elsevier, etc.).

Two weeks before (and no sooner) the oral exam, the advisor must deliver the two selected articles to the student to be used for the oral exam. The committee (including the advisor) must not provide the student with any information related to this assignment nor discuss any technical issue directly related to the assignment during the entire period of exam administration.

Grading Policy

The PhD graduate committee will prepare a one-page Pass/Fail evaluation report before leaving the oral exam location. This report is comprised of an evaluation rubric and, if necessary, obligatory remedial action items that the student must meet to proceed to, or along with, planning the dissertation. An average score of 4.0 (in 5.0 – 1.0 scale), averaged from three rubric items available in a later section (Knowledge, Critical Thinking and Communication Skill) is typically required to pass the oral exam. The advisor is responsible for making sure that the required remedial actions are completed before the Comprehensive Exam is scheduled.

Students who fail the oral exam on their first attempt will be given a second opportunity during the following semester. It is at committees’ discretion whether to use the same articles at the second attempt as during the first exam, or use different articles.

• Study guides

Written Exam (WE)
The following material, broken down by area, is intended to provide you with more information on the exam. Previous PhD Qualifying Exam problems are posted on the department web site.

Computational Intelligence

The written exam covers basic concepts and problems related to computational intelligence related areas from 5xxx level courses. Such topics are covered in courses including: CpE 5310/EE 5310/ Sys Eng 5211-Computational Intelligence and EE 5370-Introduction to Neural Networks & Applications.

Topics related to CpE 5310/EE 5310 (Computational Intelligence) include:

• Artificial Neural Networks (ANNs):
The Artificial Neuron; Supervised Learning Neural Networks; Unsupervised Learning Neural Networks; Radial Basis Function Networks. This part will be introductory in nature since most of the course involves EC, SI, and FS methods for training and developing ANN structures.

• Evolutionary Computing (ECs):
Genetic Algorithms (GAs), Genetic Programming (GP), Evolutionary Programming (EP), Evolutionary Strategies (ESs). Applications of these algorithms (GAs, ESs) to train neural networks will be emphasized.

• Artificial Immune Systems (AIS):
The biological immune system is a highly parallel and distributed adaptive system. It uses learning, memory, and associative retrieval to solve recognition and classification tasks. Artificial Immune Systems is a new computational approach for the CI community. It is an excellent tool for solving engineering problems. The design of robust controllers using AIS will be covered among other applications.

• Swarm Intelligence (SI):
Particle Swarm Optimization (PSO); Ant Colony Optimization; Cultural Evolution. Applications of PSO to train neural networks will be emphasized. The integration of Swarm and Cultural evolution will be discussed.

• Fuzzy Systems (FS):
Fuzzy Systems; Fuzzy Interference Systems; Fuzzy Controllers; Rough Sets.

• Hybrid Systems:
The integration of these CI paradigms in the development of hybrid systems for solving engineering problems. For example, the application of CI in optimal digital circuits design, mapping and routing on hardware, in design of identifiers and controllers for nonlinear systems, image and signal processing, etc.

Recommended references:

• Computational Intelligence - An Introduction by A. P. Engelbrecht
• Computational Intelligence – Concepts to Implementations by R Eberhart and Y Shi

Topics related to EE 5370 (Introduction to Neural Networks & Applications) (Prerequisite: Math 3329 or Math 3304 or equivalent) include:

• Describe real neural network structures mathematically.
• Describe, interpret, and/or apply architectures and techniques, including adaline, madaline, back propagation, BAM, Hopfield memory, counterpropagation networks, self-organizing maps, adaptive resonance theory.
• Describe a neural network architecture based on a sample problem and data.

Recommended references:
• S Haykin, *Neural Networks*
• Software: Matlab Software and Neural Network Toolbox

Computer Architecture and Embedded Systems

Topics covered in this exam are covered primarily in CpE 5110 (and its prerequisite CpE3110), CpE 5120, CpE 3150 – Digital Systems Design, CpE 5151 – Digital Systems Design Lab, CpE 5170 – Real Time Systems and include the following:

• Performance measurement and benchmarking
 • Throughput and delay
 • SPEC benchmarks
• Principles of instruction set design
 • Computer hardware operations
 • Instruction set architecture
• Pipelining, pipeline hazards and precise exceptions
 • Basics of pipelining and performance enhancement
 • Pipelined datapath
 • Pipelined control
 • Data and branch hazards
• Caches, measuring cache performance, and methods for enhancing cache performance
 • Basics of Caches and performance enhancement
 • Cache performance analysis
 • Memory hierarchy
• Dynamically scheduled pipelines
 • Thornton's scoreboard
 • Tomasulo's algorithm
 • Re-order buffer
• Branch prediction
 • Basics of branch prediction
 • Branch-prediction buffers
 • Branch-target buffers
• Virtual memory and virtually indexed caches
 • Basics of virtual memory
• Process protection
• Interpret and design hardware and software for simple real-time digital systems.
• Describe the fundamentals of microprocessor organization and operation. Show the transfer of information, from register to register or from register to memory, that occurs within a simple, generic processor for each instruction within its instruction set. Modify processor to perform new functions.
• Describe the basis for interaction between a microcontroller and external hardware. Interpret and design digital system incorporating a microcontroller and common peripherals (RAM, ROM, A/D converters, etc). Explain the operation of timers, counters, and interrupts.
• Write programs in C or ASM for a simple microcontroller.
• Write programs using interrupts to: perform a task at regular intervals using counters; to communicate between processors serially; or to provide immediate service to external hardware. Describe and build a task scheduler. Describe the basis behind existing real-time operating systems (RTOS) and implement simple programs with these systems.
• Design the interface for microprocessor peripherals and create the timing diagrams for that interface.
• Describe the metastable state, what causes it and how to prevent it.
• Describe different types of programmable logic devices and write a PLD design program.
• Describe different types of logic families and the problems that can occur when using high speed digital logic signals such as transmission line effects and noise propagation.
• Hard vs Soft Real Time (R-T) Systems and Life-Cycle Models
• Specifications Model & Architecture Model
• Reference Model
• Multi-Tasking and R-T Scheduling
• Clock-Driven Scheduling
• Priority-Driven Scheduling
• Resource and Access Control

Recommended references:
• Computer Architecture: A Quantitative Approach, by John Hennessy and David Patterson, Morgan Kaufmann.
• Computer Organization and Design: The Hardware/Software Interface, by David Patterson and John Hennessy, Morgan Kaufmann.
• C and the 8051, Tom Shultz, Prentice Hall, 2008.

Integrated Circuits and Logic Design

Topics covered in this exam are covered primarily in CpE 2210, CpE 5210, and CpE 5220 and include the following. Items marked with afterwards (general knowledge) indicates that only general knowledge of the topic is required.

• Numbering system conversions (Binary to Decimal, Binary to Hexadecimal, Hexadecimal to Decimal)
• logical operators (AND, OR, XOR, etc.)
• Boolean Algebra
• Truth Tables, SOP, POS, Minterm, Maxterm, and canonical form
• K-maps (up to 6 variables)
• design of an arbitrary function using static CMOS complementary logic (with and without an output inverter)
• digital components (mux, demux, decoder, half-adder, full-adder, etc.)
• area, speed, and power tradeoffs
• 2’s complement, sign magnitude, and unsigned formats (addition, subtraction, multiplication, division)
• complete logic sets
• flip-flops and registers
• logic arrays
• Binary Coded Decimal (BCD)
• calculating circuit delay parameters, given component delay information (e.g., calculate minimum clock period given component propagation delays and flip-flop setup and hold times)
• mux for implementing an arbitrary function
• constructing larger mux/demux from smaller ones
• adder circuits (RCA, CLA, CSA)
• SRAM
• IEEE floating-point numbers (addition, subtraction, multiplication, division)
• fixed-point fractional numbers and round-off error
• Mealy and Moore state machines
• VHDL
 • entity and architecture statements
 • behavioral, structural, and dataflow models (for both combinational and synchronous circuits)
 • testbenches
• CMOS transistors (NMOS/PMOS, physical layout, current equations, threshold voltage, body effect, velocity saturation/channel effects)
• CMOS inverter characteristics (switching threshold, load capacitance calculation, switching power/energy, design for equal rise/fall time, fan-in/out capacitance, equivalent MOS resistance, propagation delay, delay optimization)
• CMOS logic gate design (static CMOS logic design, dynamic logic design, gate delay calculation, scaling of drive strength and its impact)
• VLSI interconnect (resistance and capacitance calculation, lumped RC wire models, delay calculation)

Recommended references:
• Behrooz Parhami, Computer Arithmetic Algorithms and Hardware Designs, Oxford University Press, New York, 2000
Networking, Security and Dependability

The morning session covers basic concepts and problems related to networked systems. Such topics are covered in courses including CpE 5410 (Introduction to Computer Communication Networks) and CpE 5420 (Introduction to Network Security) CpE 5510 Fault-Tolerant Digital Systems including the following topics:

- Understand network architectures.
- Describe an overview of communication networks, explaining the general principles governing the transport, network, medium access control, data link, and physical layers in a layered architecture.
- Describe how these layers operate and interact, and how the major functions of each layer are affected by network speed and user requirements.
- Identify protocols commonly used for provision of fundamental network services, and compare and contrast alternatives.
- Investigate the limitations of current networks, such as the Internet, Ethernet, ATM, and wireless LANs.
- Evaluate the performance of a network, and suggest improvements employing new technologies.
- Discuss basic security and reliability challenges in networking, as well as solutions commonly employed to address these challenges.
- Describe the basic notions of confidentiality, authentication, integrity, and non-repudiation
- Discuss each of the following threats: man-in-the-middle attack, meet-in-the-middle attack, replay attack.
- Describe each of the attacks on information flow: interruption, interception, modification, and fabrication, with examples of each.
- Describe the typical “life-cycle” of a virus.
- Explain the differences between security policies, mechanisms, and services.
- Describe the functioning of a firewall and/or a Virtual Private Network (VPN).
- Discuss advantages of fault-tolerant systems and basic approaches.
- Describe redundancy and voting techniques.
- Describe recovery and rollback techniques.
- Given input, determine MTTR, MTBF, MTTF.
- Error detection/correction codes
- Self-checking logic circuit design techniques
- Generate a fault tree analysis from data.
- Describe common probability distributions associated with reliability analysis.
- Mathematically relate reliability, system life time, and failure rate.
- Differentiate reliability from availability.
Describe basic graph-theoretic terms such as, node, link, average degree, betweenness, and usage of them for modeling network performance.

Recommended references:

- Security Engineering, Anderson, Wiley

Electrical Engineering

Please refer to the guidelines for the EE Qualifying exam for additional information about these topics.

Oral Exam (OE)

All examinees are required to prepare their oral presentation material with respect to the following policy.

Presentation format (no more than 40 PowerPoint slides)

The suggested format for the presentation are as follows:

- Article#1 (no more than 10 slides for 15 min)
 - Motivation and rationale of article #1
 - Complete overview of the technical contents of article #1
- Article#2 (no more than 10 slides for 15 min)
 - Motivation and rationale of article #2
 - Complete overview of the technical contents of article #2
- Critique on article#1 (no more than 10 slides for 15 min)
 - Critical analysis and discussion on:
 - Novelty
 - Shortcomings
• Pertinent issues related with the examinees’s own future research (e.g. how does the own research fit within article #1 and/or what common components does the own research share with article #1, etc.)
• Pertinent issues related with the examinees’s own future research (e.g. how article #1 can be improved and/or what advances can be made by the own research to build upon article #1, etc.)
• Other pertinent issue if any

• Critique on article#2 (no more than 10 slides for 15 min)
 Critical analysis and discussion on:
 • Novelty
 • Shortcomings
 • Pertinent issues related with the examinees’s own future research (e.g. how does the own research fit within article #1 and/or what common components does the own research share with article #2, etc.)
 • Pertinent issues related with the examinees’s own future research (e.g. how article #2 can be improved and/or what advances can be made by the own research to build upon article #2, etc.)
 • Other pertinent issue if any

Evaluation rubric

The committee members will observe the students’ ability required to conduct research independently. It will be evaluated based on the items in the rubric shown below. Therefore, the presentation material and the delivery of presentation should be prepared accordingly.

<table>
<thead>
<tr>
<th>Knowledge: an ability to apply knowledge of subject matter within their field of study</th>
<th>Unsubstantiated (1)/ Developing (2)</th>
<th>Marginal (3)</th>
<th>Acceptable (4)/ Proficient (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not reflect understanding of subject matter and associated literature</td>
<td>Reflects understanding of subject matter and associated literature</td>
<td>Reflects mastery of subject matter and associated literature</td>
<td></td>
</tr>
<tr>
<td>Demonstrates limited understanding of theoretical concepts</td>
<td>Demonstrates understanding of theoretical concepts</td>
<td>Demonstrates superior understanding of theoretical concepts</td>
<td></td>
</tr>
<tr>
<td>Limited evidence of comprehension</td>
<td>Some evidence of comprehension</td>
<td>Significant evidence of comprehension</td>
<td></td>
</tr>
<tr>
<td>Limited expansion upon previous research</td>
<td>Builds upon previous research</td>
<td>Greatly extends previous research</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical Thinking: an ability to engage in productive critical thinking within their field of study</th>
<th>Demonstrates rudimentary problem-solving skills</th>
<th>Demonstrates average problem-solving skills</th>
<th>Demonstrates mature problem-solving skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrates limited originality</td>
<td>Demonstrates adequate originality</td>
<td>Demonstrates significant originality</td>
<td></td>
</tr>
<tr>
<td>Displays limited creativity and insight</td>
<td>Displays creativity and insight</td>
<td>Displays significant creativity and insight</td>
<td></td>
</tr>
</tbody>
</table>
Communication:
an ability to
communicate
effectively
within their field
of study

<table>
<thead>
<tr>
<th>Presents reasonings incorrectly, incoherently or faulty</th>
<th>Presents reasonings coherently and clearly</th>
<th>Presents reasonings in a superior manner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defines objectives poorly</td>
<td>Defines objectives clearly</td>
<td>Defines objectives thoroughly</td>
</tr>
<tr>
<td>Contains numerous grammatical and spelling errors</td>
<td>Contains some grammatical and spelling errors</td>
<td>Contains no grammatical or spelling errors</td>
</tr>
<tr>
<td>Organization is poor</td>
<td>Organization is logical</td>
<td>Organization is excellent</td>
</tr>
</tbody>
</table>

• Appendix

List of written exam (WE) subjects: revised (effective Fall 2018) and previous tables

Revised subject list of CpE PhD qualifying exam (effective in Fall 2018)

1. Computational Intelligence

<table>
<thead>
<tr>
<th>C1 – C4</th>
<th>Single subject or combined subjects from:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CpE 5310 Computational Intelligence</td>
</tr>
<tr>
<td></td>
<td>SysEng 5211 Computational Intelligence</td>
</tr>
<tr>
<td></td>
<td>EE 5370 Introduction to Neural Networks and Applications</td>
</tr>
</tbody>
</table>

2. Computers and Architecture and Embedded Systems

<table>
<thead>
<tr>
<th>C5 – C8</th>
<th>Single subject or combined subjects from:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CpE 3150/5120 Intro to Microcontrollers and Embedded System Design, Digital Computer Design</td>
</tr>
<tr>
<td></td>
<td>CpE 5151 Digital Systems Design Laboratory</td>
</tr>
</tbody>
</table>

3. Integrated Circuits and Logic Design

<table>
<thead>
<tr>
<th>C9 – C12</th>
<th>Single subject or combined subjects from:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CpE 2210 Introduction to Digital Logic</td>
</tr>
<tr>
<td></td>
<td>CpE 5210 Introduction To VLSI Design</td>
</tr>
<tr>
<td></td>
<td>CpE 5220 Digital System Modeling</td>
</tr>
</tbody>
</table>

4. Networking, Security and Dependability

<table>
<thead>
<tr>
<th>C13 – C16</th>
<th>Single subject or combined subjects from:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CpE 5410 Introduction to Computer Communication Networks</td>
</tr>
<tr>
<td></td>
<td>CpE 5420 Introduction to Network Security</td>
</tr>
<tr>
<td></td>
<td>CpE 5510 Fault-Tolerant Digital Systems</td>
</tr>
</tbody>
</table>

Previous subject list of CpE PhD qualifying exam

1. Computers and Architecture

<table>
<thead>
<tr>
<th>CM1 – 4</th>
<th>CpE3110 Computer Organization and Design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CpE5110 Principles of Computer Architecture</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CpE5120</td>
<td>Digital Computer Design</td>
</tr>
<tr>
<td>CA1 – 4</td>
<td>All courses for CM1 – 4</td>
</tr>
<tr>
<td></td>
<td>CpE6110 Advanced Computer Architecture I</td>
</tr>
</tbody>
</table>

2. Integrated Circuits and Logic Design

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM5 – 8</td>
<td>CpE2210 Introduction to Digital Logic</td>
</tr>
<tr>
<td></td>
<td>CpE5210 Introduction To VLSI Design</td>
</tr>
<tr>
<td></td>
<td>CpE5220 Digital System Modeling</td>
</tr>
<tr>
<td>CA5 – 8</td>
<td>All courses for CM5 – 8</td>
</tr>
<tr>
<td></td>
<td>CpE6210 Digital Logic</td>
</tr>
</tbody>
</table>

3. Embedded Computer Systems

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM9 – 12</td>
<td>CpE3150 Introduction to Microcontrollers and Embedded System Design</td>
</tr>
<tr>
<td></td>
<td>CpE5151 Digital Systems Design Laboratory</td>
</tr>
<tr>
<td></td>
<td>CpE5170 Real-Time Systems</td>
</tr>
<tr>
<td></td>
<td>CS3800 Introduction To Operating Systems</td>
</tr>
<tr>
<td>CA9 – 12</td>
<td>CpE3150 Introduction to Microcontrollers and Embedded System Design</td>
</tr>
<tr>
<td></td>
<td>CpE5151 Digital Systems Design Laboratory</td>
</tr>
<tr>
<td></td>
<td>CpE5170 Real-Time Systems</td>
</tr>
<tr>
<td></td>
<td>CS3800 Introduction To Operating Systems</td>
</tr>
</tbody>
</table>

4. Computational Intelligence

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM13 – 16</td>
<td>CpE/EE5310 Computational Intelligence</td>
</tr>
<tr>
<td></td>
<td>SysEng5211 Computational Intelligence</td>
</tr>
<tr>
<td></td>
<td>EE5370 Introduction to Neural Networks and Applications</td>
</tr>
<tr>
<td>CA13 – 16</td>
<td>All course for CM13-16</td>
</tr>
<tr>
<td></td>
<td>CpE6320 Adaptive Dynamic Programming</td>
</tr>
<tr>
<td></td>
<td>CpE6330 Clustering Algorithms</td>
</tr>
<tr>
<td></td>
<td>CpE6310 Markov Decision Processes</td>
</tr>
</tbody>
</table>

5. Networking

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM17 – 20</td>
<td>CpE5410 Introduction to Computer Communication Networks</td>
</tr>
<tr>
<td></td>
<td>CpE5420 Introduction to Network Security</td>
</tr>
<tr>
<td>CA17 – 20</td>
<td>CpE5410 Introduction to Computer Communication Networks</td>
</tr>
<tr>
<td></td>
<td>CpE5420 Introduction to Network Security</td>
</tr>
</tbody>
</table>

6. Security and Reliability

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM21 - 24</td>
<td>CpE5510 Fault-Tolerant Digital Systems</td>
</tr>
<tr>
<td></td>
<td>CpE5410 Introduction to Computer Communication Networks</td>
</tr>
<tr>
<td></td>
<td>CpE5420 Introduction to Network Security</td>
</tr>
<tr>
<td>CA21 - 24</td>
<td>All course for CM21 – 24</td>
</tr>
<tr>
<td></td>
<td>CpE6440 Network Performance Analysis</td>
</tr>
<tr>
<td></td>
<td>CpE6510 Resilient Networks</td>
</tr>
</tbody>
</table>