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Objectives: 
 

To illustrate computer usage in determining inverse Laplace transforms.  Also to determine 
useful signal and system characteristics by using Laplace transform theory and computer 
calculations.  

Theory: 
 

The Laplace transform is a convenient tool in the analysis of linear time-invariant systems.  In 
particular, we can transform the system set of integro-differential equations or the system 
representation (component or block diagram).  This permits us to find algebraic transformed 
equations that represent the system.  We use these algebraic equations to solve for the transform 
of the output signal Y(s) after we have computed the transform of the input signal X(s) and supplied 
the initial conditions.  The algebraic solution is simpler than a differential equation solution. All 
that remains to find the output signal at this point is to compute the inverse transform of Y(s).  
This can easily be done for rational transforms by using partial fraction expansion, though the 
computations are tedious.  
 

While there is symbolic mathematics software (e.g., MATLAB Symbolic Math Toolbox) that 
we can use to compute Laplace transforms of signals, it is not too effective except for transforms 
that are easily found in a table.  Thus we will not use MATLAB to compute Laplace transforms 
here.  
 

The computer is very helpful in eliminating the tedious computations required to compute 
partial fraction expansion (PFE) coefficients for rational transforms.  These coefficients and the 
corresponding transform pole locations can be used to generate equations easily for the signal that 
corresponds to a Laplace transform.  The MATLAB function that generates the PFE coefficients 
is [r,p,k]=residue(n, d). The column arrays r and p are the PFE coefficients and the 
corresponding pole locations, respectively.  The row array k contains the coefficients of the direct 
terms present when the transform is not proper; that is, the terms obtained by long division when 
the transform numerator degree is greater than or equal to the transform denominator degree.  As 
an example, consider the transform.  
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Let us assume that this transform becomes  
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when the denominator is factored.  To compute the PFE coefficients of X(s), the inputs to residue 

must be the row arrays 
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corresponding to the PFE 
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From the tables, the signal corresponding to the PFE is  
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Thus, we can easily write the mathematical expression for the signal and plot it once we have used 
residue to find the PFE parameters.  In this experiment we restrict ourselves to proper rational 
functions.  In this way we avoid having to approximate impulses and derivatives of impulses for 
plotting purposes.  
 

We see that pole locations for a signal give us important information about the signal time 
waveform characteristics.  The zero locations also affect the signal term multipliers (the PFE 
coefficients).  The pole and zero locations are the roots of the numerator and denominator 
polynomials respectively.  Therefore, we can use z=roots(n) and p=roots(d) to find them.  Since 
the pole and zero locations give us useful information about a signal, we often generate a pole-zero 
plot to show these locations.  
 

MATLAB has a built-in function to plot poles and zeros in the z-plane called zplane(z,p).  
This function can also plot poles and zeros from transfer function coefficients.  See the help file 
for details.  

  
 r=   p=  k=  
  R1  0   ko  k1  
  R2   a    
  R3   b    
  R4   b    
  R5 + I5i c di    
  R5 – I5i c di    
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If a system is linear, time-invariant, and has zero initial conditions, then the output y(t) is  
 
      *y t x t h t          (11.5) 

 
where x(t) is the input and h(t) is the impulse response. Using the convolution theorem, the Laplace 
transform of the output is  
 
      Y s X s H s          (11.6) 

 
We call the Laplace transform of the impulse response, H(s), the system transfer function.  We 
can find it directly from the set of integro-differential equations that characterize the system or 
directly from the system representation (component or block diagram).  The transfer function is 
extremely important to us since it completely characterizes the system except for initial conditions.  
 

We can use the function roots on the transfer function denominator polynomial to determine 
system pole locations.  From these pole locations we can determine the system stability 
characteristics. 
 

For a stable system, we can also find the frequency response directly from the transfer function 
by replacing s by j .  Therefore, the amplitude response is a slice through the transfer function 
amplitude surface along the imaginary axis.  We demonstrate this in Part 7 in this experiment.  
Also, the important system parameters of break frequencies and damping ratios can be found 
directly from the transfer function, since its coefficients are the same as those of the frequency 
response.  This also means that we can plot the straight-line approximation to a system’s Bode 
amplitude and phase responses directly from the transfer function.  This straight-line 
approximation can be used to illustrate basic amplitude and phase response characteristics and 
help us choose any control system compensation that may be necessary. 
 
Preliminary: 
 
1. Find the transfer function for the feedback control system characterized by the block 

diagram representation shown in Figure 11.1.  You will use the transfer function in Part 6 
of the experiment procedure. 

 
2. Find the inverse Laplace transform of the equation in Part 4. HINT: use your textbook for 
 help.  
 
Laboratory Procedure: 
 
1. Find and plot the mathematical expressions for the signals corresponding to the Laplace 

transforms  
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2. Use the function zplane to create the pole-zero plot for the Laplace transforms of Part 1. 
 
3. Consider the simple Laplace transform. 
 

   
3

3 2

9

5 11 15

s s
X s

s s s




  
 

 
a. Use the function zplane to create the pole zero plot for X(s). 

 
b. The parameter s equals the complex variable j   and its values can be plotted 

on the s-plane which has axes of and   .  Thus,  X s  is a function of the two 

variables  and    and can be plotted as a surface above the s-plane.  You can 

use the following script to plot  X s  over the region 10 0 5 5,        . 

 
[a,w]=meshgrid(‐10:0.1:0,‐5:0.1:5); s=a+j*w;   

X=(s.^3+9s)./(s.^3+5*s.^2+11*s+15); 

surface(w,a,abs(X)); axis([‐5 5 ‐10 0 0 6]); 

view(‐24,40); 

set(gca,'xdir','reverse','ydir','reverse'); 

xlabel('w'); ylabel('a'); zlabel('|H(s)|');   

 

We have plotted only for negative values of s so the zero shows more clearly.  
 

Surface plots like the one plotted help us visualize the interaction of the poles and 
zeros on the transform values.  A surface plot of the angle can also be plotted. It is 
usually not easy to interpret.  Try the script on some other transforms.  It is not 
always possible to produce the plot due to numerical computation problems.  

 
4.. Find and plot the mathematical expression for the signal corresponding to the Laplace 

transform. 
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5. Plot the pole-zero plot and the signal that corresponds to the transform 
1
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for  c = 0.03, 0.06, and 0.12.  What is the effect of the pole location on the signal 
characteristics? 

 
6. The transformed block diagram representation for a submarine depth control system is 

shown in Figure 11.1.  In this block diagram, C(s) is the transform of the commanded 
depth and D(s) is the transform of the depth.  

 
 

    Figure 11.1 Submarine Depth Control System 
 

You found the transfer function for this system in Part 1 of the Preliminary.  
 

a. A quick 50 ft dive command issued at t = 0 can be modeled as ( ) 50 ( )c t u t    
Find the resulting submarine depth as a function of time for K = 0.4, K = 0.08, and 
K = 0.04.  Use a time scale interval of 0 to 30 s for K = 0.4 and 0 to 200 s for K = 
0.08 and 0.04 to illustrate the significant characteristics. Describe the 
characteristics in terms of submarine behavior. 

 
b. A gentler dive command is shown in Figure 11.2  

 
 
 
 
 
 
 
 
 
 

    Figure 11.2 Gentler Dive Command  
 

Repeat Part a for this dive command. Compare with the results of part a.  
 

7. In this part of the experiment, we investigate the frequency response of fifth-order 
Butterworth and Chebyshev approximations to the ideal LPF.  The filters are normalized 
to have a maximum gain of 1 and a cutoff frequency of 1 rad/s.  The Butterworth filter 
transfer function is 
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And the Chebyshev filter transfer function is  
 

  5 4 3 2

0.0626

0.5745 1,4150 0.5489 0.4080 0.0626c
H s

s s s s s


    
   (11.8) 

 
a. Plot the pole-zero plots for each filter.  Also, plot a circle of radius 1 and the ellipse 

specified by the equation  
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on each plot.  What do you notice about the pole locations? 

 
b. Plot the amplitude and phase responses for both filters for 2 2    rad/s using linear 

scales.  Plot both amplitude responses on one set of axes and both phase responses on one 
set of axes. 

 
c. Since the frequency response is H(s) with s j  , then the amplitude response is the slice 

through  H s along the imaginary axis.  To see this, use the surface plotting script from 

Part 3b to plot  H s  for both filters.  The near edge of the plot is along the imaginary 

axis.  Therefore, the near edge of the plot is the slice through  H s  along the imaginary 

axis, which is the amplitude response.  To obtain an appropriate scale, change the 
arguments in the meshgrid command to -4:0.05:0, -2:0.05:2 and the input vector in the 
axis command to [-2 2 -4 0 0 6].  Also, to enhance the capability of viewing the frequency 
response and poles, change the surface view angle by using the statement view(-5,60); 
rather than view(-24,40).  


