
EE216:Exp1-1

This first laboratory experiment is an introduction to the use of MATLAB. The basic
computer-user interfaces, data entry techniques, operations, functions, mathematical expressions
and programming techniques are reviewed. The student is asked to perform the various tasks
required to use MATLAB effectively in the performance of engineering analysis and design.

Succinct information concerning the basic MATLAB concepts required is presented in

Appendix A in the form of a brief tutorial. The MATLAB User’s and Reference Guides should
be used to extend the student’s breadth and depth of understanding.

In this experiment, the student is first asked to reproduce the examples in the tutorial to
gain hands-on familiarity and confidence with MATLAB operational methods and procedures.
Further understanding of these methods and procedures is then promoted with additional examples
of the student’s own design. Throughout this experiment, the Numeric Format should be set to
Compact to reduce the space required for computer output and in the Laboratory Notebook.

I. Starting MATLAB Session

1. Logon to your account. Click on the MATLAB 6.1 icon on the desktop. (MATLAB is also
available in the Start Menu) The large window is the Command Window.

2. Clear the Command Window using Edit-Clear Command Window. Switch to the

compact numeric format under File-Preferences-Command Window-Numeric Display.

3. Enter your name and the date as a comment at the top of the Command Window.
Comments are preceded by a %. Start every section of the lab with your name, the section
number, and a divider:

Example:

% Name
% Lab 1 Section 1
% *****************

EE 216 – Experiment 1
MATLAB Structure and Use

EE216:Exp1-2

II. MATLAB Statements

1. Reproduce the statement examples in Section 1.1 of the tutorial.

2. Enter some data and define some variables of your own using all of the concepts presented
in Section 1.1 of the tutorial.

3. Print the Command Window before continuing.

III. M-Files

M-files are one of the most important concepts in MATLAB. They are files of statements
that can be executed by MATLAB when the file name is typed in the Command Window. They
are created and edited in the Editor/Debugger. One of the benefits of using M-files is that you
need not retype commands over and over in the Command Window every time you make a
mistake. M-files are often referred to as scripts. It is very important to understand M-files, as
most of the laboratory experiments will be performed using M-files.

See Section 1.2 in the Tutorial for instructions on creating M-files.

1. Create a folder for your EE 216 laboratory work on your s:/ drive. Save your m-files to this
folder. To add this folder to the MATLAB path go to File-Set Path-Add Folder. Be sure
to save before you exit. You will now need to change to this directory. Use the pwd
command to see the current directory and use the cd command to change directory.

Example: cd s:\ee216

Input data for a script can be supplied by using a load statement (the data is loaded into
Matlab's Workspace). The data must be stored in a file with a .mat extension. Data can be saved
in such a file by using the save statement. See the tutorial or use the help command for
instruction on using these commands.

2. In the command window, use the clear all command and then define the variables a, b, c,
and d. Choose any values. Use the save command to place these values into a file called
variables.mat. Again use the clear all command. Type whos to make sure the
workspace is clear. Now use the load command to reinstate your variables.

The remainder of the experiment should be done with m-files. Each section of an
experiment will be written in one large m-file. Using the Debugging mode of the editor will help
in writing your scripts. One can set break points, indicated by a red dot, to run the code from the
beginning to a specific line. After finishing with breakpoints click the Exit Debug mode menu
button. One can also run a specific segment of code by highlighting it, right clicking, and using
the Evaluate Selection menu option. For more information on the Debugging mode search for
Using Debugging Features in the Matlab help system.

EE216:Exp1-3

IV. Numeric Format

1. Reproduce the examples of complex number format and data entry in Section 1.3.1 of the
tutorial.

2. Create and enter some complex numbers of your own using the concepts introduced in
section 1.3.1.

V. Matrix and Vector Format

1. Reproduce the examples of matrix and vector format and data entry in Sections 1.3.2 and
1.3.3 of the tutorial.

2. Use the MATLAB command roots to find the roots of the polynomial 2 x
2
4x 10. (Hint:

Use the help command to find out how to use the roots function.) Verify your answer by
using the quadratic formula to manually compute the roots.

3. Read Sections 1.3.4 and 1.3.5 of the tutorial.

VI. Character Strings

1. Reproduce the character string examples in Section 1.4 of the tutorial.

2. Enter the character string c=‘We learn to use MATLAB in EE 266 Laboratory’. Print
the statement MATLAB Laboratory by selecting the desired words and spaces from the
variable c.

VII. Arithmetic Operations

1. Reproduce the examples in Section 1.5 of the tutorial.

2. Find the matrix a-bc
2
+2d' when the matrices a, b, c, and d are

 1.5 3.3
 6.0 -4.5
-2.5 0.7

 a =
 
 
 
  

 ,
 0.5 0.3
-0.1 0.2
 0.4 -0.3

 b =
 
 
 
  

1 2
1 2

 c =  
 
 

 ,
3.1 1.4 -0.3

 =
-0.5 1.6 0.1

d  
 
 

3. We define the element of the matrix a in row i and column j to be aij. Use array operations
to find bij - cij (dij)4 for all i and j for your choice of three 2x3 arrays b, c, and d. Manually
verify the above result for i  = 1 and j = 2.

EE216:Exp1-4

VIII. Input/output in M-files, Function M-files

See Section 1.6 in the Tutorial for instructions on creating function and I/O M-files. Do not
replicate the instructions, only read them.

The input-output characteristics of a script m-file make it impossible to use as a subroutine
within a program. Function m-files are useful for this purpose since they can be created with
input and/or output variables. No internal variable values remain in the Workspace after a
function m-file is exited. Thus, such data must be passed back out or saved with a save statement
within the function m-file if it is to be used again.

1. Create a function m-file, called sumsin.m that sums two sinusoids. The inputs should be t,
f1, and f2. The outputs should be 1 sin(2 fl)s tπ= , 2 sin(2 f2)s tπ= , and 3 s1 + s2s = .

To test your function you may wish to call it in the Command Window. To do this, use the
command line [s1 s2 s3] = sumsin(t,f1,f2). If there are no errors, you may assume that your
function works correctly.

IX. Logical Operators

1. Reproduce the logical operator examples in Section 1.7 of the tutorial in the Command
Window.

2. In a script M-file, use logical and array operations to produce matrix b from matrix a where

 1.2 -3.2 24
 0.6 -0.3 -0.5
-2.3 1.6 20

 a =
 
 
 
  

 and
 1.2 0 0
 0 -0.6 -1.0
 0 1.6 0

 b =
 
 
 
  

X. Mathematical Functions and Expressions

1. Read Section 1.8 of the tutorial and reproduce the mathematical expression examples in
Section 1.8.1.

2. Try the three functions round, floor, and ceil, on

[]x = -3.6, -2.5, -1.4, -1, 0, 1.4, 2.5, 3.6

to observe their characteristics.

EE216:Exp1-5

3. Find the value of x when

2 0.2

1.6 0.5

log[2 sin (3)]
2 3

ex
−

−

+ +
=

+

4. If t varies from –1.2 to 1.2 in steps of 0.4, find;

3 2a. () = 3 + 2 - + sin()w t t t t t .
0 0

. ()
2 0

t
b x t

t
< 

=  > 

XI. Flow Control Statements

1. Reproduce the flow control examples in Section 1.9 of the tutorial.

2. Use for statements to find the values of

() 3cos(2 ft 0.1) for 0, 0.1, 0.2, 0.3, 0.4 sx t tπ+ + = when f = 10, 15, and 20 Hz. Use
one set of statements to compute the values for all three frequencies and store the results in
a two-dimensional array. (Hint: use two nested for loops, and a double index.) What is
the value of x(t) when f = 15 Hz and t = 0.3 s?

3. Use the while statement to find the largest value of positive t for which ()1.2 cose tω and t
3

 are both less than 10. Make the computation forω = 35, 40, and 45 and find your answers
 to the nearest 0.01.

4. Evaluate () tx t e−= for  1 1t− ≤ ≤ in steps of 0.2 using for and if statements. Repeat using

logical operations and 0-1 arrays. Now reduce the step size to 0.0002. Do not print the
values of x(t) to the Command Window since there are 10,001 of them. Be sure to
initialize the array first.

XII. Numeric Functions

1. Read Section 1.10 of the tutorial and reproduce the numeric function examples in Section
1.10.1.

2. Create an 11-element vector with values of 2() 4cos(2 0.2) 3sin()x t t tπ π= + + at equally

spaced times in the interval 0 1t≤ ≤ . Without printing the vector, find the maximum
element value, the minimum element value, the average of the element values and the
indices of the elements for which the element magnitude is greater than 4. Check your
results by printing the vector to the Command Window and identifying the values found.

EE216:Exp1-6

3. Given the array

1 4 3 2
 = 4 1 2 5

3 3 5 1

 
 
 
  

A

 use MATLAB statements to find : (a) the number of rows and columns in A, (b) the
 maximum and minimum element values in A, (c) the maximum and minimum element
 values in each row of A, (d) the average element value in each column, (e) the average of
 all element values.

XIII. Plotting Functions

It is very useful to plot or graph the results of a script. MATLAB has several functions for
this purpose. Some of these are listed in Section 1.11 of the tutorial.

1. Create a script that uses the sum of sinusoids function created in VIII and plot the output
signals. Suggested values are t = 0:0.01:10, f1 = 0.2, f2=0.425. Plot all three sinusoids
on the same axis. Label the axes, and title the plot with your initials, experiment number
and a brief plot description. Create a legend or label.

2. In a new figure window, plot all three sinusoids on separate axes, but in the same window.
Title the first (top) axis, and label the others appropriately. You may find that the printout
will be cleaner if you only label the bottom x axis.

