
EE216:Lab.Man.:AppendixA, p1

EE216 Laboratory Manual
Appendix A - MATLAB

®
 Tutorial

Contents

1.0 Basic MATLAB Information A - 3

1.1 Statements A – 3

1.2 M-Files A – 6

 1.2.1 Script M-Files A - 6
 1.2.1 Storage and Retrieval Commands A - 6

1.3 Numeric Format A – 7

 1.3.1 Complex Numbers A - 7
 1.3.2 Matrices and Vectors A - 7
 1.3.3 Vectors A - 9
 1.3.4 Array A - 10
 1.3.5 Special Number Notation A - 10

1.4 Character Strings A - 10

1.5 Arithmetic Operations A - 11

1.6 Function M-Files A - 12

1.7 Logical Operations A - 13

1.8 Mathematical Functions A - 13

 1.8.1 Mathematical Expressions A - 14

1.9 Flow Control A - 14

 1.9.1 For Statement A - 15
 1.9.2 While Statement A - 16
 1.9.3 If Statement A - 16

1.10 Other Functions and Commands A – 17

 1.10.1 Numeric Functions A - 17

EE216:Lab.Man.:AppendixA, p2

1.11 Plotting Functions and Commands A - 18

2.0 Specific Application Information A - 19

2.1 Signal and System Analysis Functions A - 19

2.1.1 Step and Ramp Functions A -20

2.1.2 Continuous-Time Fourier Series Functions A -20
2.1.2.1 Fourier Series Coefficients A -20
2.1.2.2 Truncated Fourier Series A – 20

 2.1.3 Fourier Transform Functions A - 21

2.1.3.1 Fourier Transform A - 21
2.1.3.2 Inverse Fourier Transform A - 22

2.1.4 Straight-Line Approximate Bode Plot Functions A - 23

2.1.4.1 Transfer Function Parameter Computation A - 23
2.1.4.2 Straight-Line Data Computation A - 24

EE216:Lab.Man.:AppendixA, p3

MATLAB Tutorial

This tutorial provides basic MATLAB information and specific application information for the
EE266 Linear Systems I Laboratory. The MATLAB User’s and Reference Guides should be
used to obtain greater breadth and depth of information.

The tutorial is designed so it will work with the MATLAB Professional Version, plus the
Signal Processing, Control System, and Symbolic Math Toolboxes, or the MATLAB Student
Edition.

1.0 Basic MATLAB Information (close all, look for, help)

On initiation of MATLAB, the Command Window, Workspace, Launch Pad. Command
History, and Current Directory windows appear. All exercises will use the Command
Window. The Workspace and Command History windows show what variables are defined
and past commands. These lists can also be accessed through the Command Window at the
Command Prompt (>>).

The Command Window can be cleared by the clc command or by clicking on Edit -Clear
Command Window. This does not clear the Workspace. The Workspace can be cleared by
the command clear all or by Edit -Clear Workspace.

Immediately after initiation of MATLAB, click on Edit -Clear Command Window to
eliminate unneeded information at the top of the monitor screen. Also click on File - Preferences
- Command Window - Numeric Display to minimize the vertical space required in the
Command Window. This increases the amount of information visible on the monitor screen and
reduces the size of Command Window printouts. Command Window printout is accomplished
by clicking on File -Print. This will only print what is currently displayed in the Command
Window. The Command Window has a limited buffer size; if you fill the buffer, old
information will be lost and cannot be recovered.

1.1 Statements

In the Command Window, all statements are typed at the Command Prompt.

Professional Version Student Edition
>> EDU>>

Statements preceded by % are comments (non-executable statements). Identify the specific
laboratory experiment and section of the experiment in your comments:
>> % Name
>> % Lab 1 Section 2
>> % *****************

EE216:Lab.Man.:AppendixA, p4

Results are stored as the variable ans in the workspace and displayed in the Command

Window.

>> 3.45 (Enter)
ans =

 3.4500
>> (Enter)

After the statement is complete, pressing the Enter key causes the command to be executed.

>> sqrt(1.44) (Enter)

ans =

 1.2000

>> (Enter)

If a statement is too long for a single line, it can be extended by typing a space and three periods
followed by pressing the Enter key.

>> 2+6.35+sqrt(36) ... (Enter)
+sqrt(49) (Enter)

ans =
 21.3500

Multiple statements, separated by commas, can be typed at one prompt. The statements are

executed from left to right.

>> a=16, b=sqrt(a)
a =

 16
b =

 4

If statements are terminated with a semicolon (;), then they are executed but the result is not
printed to the Command Window. The values entered or computed can be subsequently
displayed by entering the variable values at a prompt.

>> c=25; d=sqrt(b)+2.5;
>>
>> ans, a, b, c, d
ans =

21.3500

EE216:Lab.Man.:AppendixA, p5

a =
16

b =
4

c =
25

d =
4.5000

The statement sqrt(1.44) uses the MATLAB function sqrt to compute the square root of

1.44. MATLAB has many built-in functions. Use the lookfor or help commands if you wish to
search for a MATLAB function or to get help using the function. Help can also be accessed in
Help - MATLAB Help.

>> lookfor sinc
(will display all functions with “sinc” in the name or function description)

>> help sinc
(will display the help file, or comments, giving instructions on how to use the function.)

Typing only help at the command prompt will list all the MATLAB directories that contain
functions.

Previously entered statements in the Command Window are stored in a buffer. They can
be recovered by using the Up Arrow key or by using the Command Window History. This
buffer is not cleared by either clear all or Edit – Clear Session but is cleared with Edit -Clear
Command History.

Data can be stored as variables. Variable names are case sensitive. That is, mb and Mb are
two different variables. Variable names cannot start with a number and cannot contain
punctuation or special characters.

Note that all entered and computed values remain in the Workspace and can be used or printed to
the Command Window. Any variable can be overwritten later. Notice that ans is now21.3500,
when before it had been 1.2000

To determine which variables are stored in the Workspace and their size, we can use the
command whos.

 whos
 Name Size Bytes Class
 a 1x1 8 double array
 ans 1x1 8 double array
 b 1x1 8 double array
 c 1x1 8 double array
 d 1x1 8 double array
Grand total is 5 elements using 40 bytes

EE216:Lab.Man.:AppendixA, p6

1.2 M-Files

Files with the filename extension .m are executable files. We call such files m-files and they
come in two different types: script and function. Function m-files will be discussed later. The
functions that we have already defined and used are contained in function m-files in the MATLAB
toolboxes.

1.2.1 Script M-Files.

Open the Editor/Debugger using File-New-M-file. This can also be accomplished using
the new file icon on the toolbar. Begin with the commands clear all, close all and clc. You
should begin all script M-files with these commands to clear out all previously used variables,
close open figure windows and refresh the command window. Use comments containing your
name, experiment number and what section of the lab you are working on. It is always good
programming practice to comment your scripts so that others can more easily read your code. A
template is provided that shows how to structure your comments (ask your instructor for its
location). Save your m-file with File - Save using an appropriate file name (e.g., exp1.m). Do
not begin an M-file name with numbers or punctuation. Do not use punctuation in a file name.

NOTE: MATLAB function names are reserved file names. If you name an M-file with the same
file name as a function, MATLAB will execute your file instead of the function when it is called.
Do not name an M-file with a reserved file name!

To execute a script M-file, type the script name at the command prompt and press enter.

>> exp1 (Enter)

If your script contains errors, MATLAB will display an error message below the prompt, along
with the line number that generated the error. If your script does not contain errors, you will see
another prompt when the script has executed. You can also save and run an M-file from the
Editor/Debugger window using the F5 function key.

1.2.2 Storage and Retrieval Commands

save filename variables - Saves the variables from the Workspace in the file filename.mat
in the MATLAB/work directory. If variables is left off, then all
variables in the Workspace are saved. load filename
 - Loads file filename.mat from the MATLAB/work
directory.

1.3 Numeric Format

So far we have only entered and used real numbers. We can also enter and use other types of
numbers.

EE216:Lab.Man.:AppendixA, p7

1.3.1 Complex Numbers

A complex number consists of a real part and an imaginary part. We can use i or j as an
indicator for the imaginary part. A complex number printed to the Command Window always
uses the indicator i. MATLAB will recognize i or j as imaginary indicators. The real part,
imaginary part, amplitude, and angle in radians of a complex number are given by the functions
real, imag, abs, and angle, respectively. (editor) indicates lines written in the editor. >> indicates
the beginning of the line(s) of output that would result (when run) from the line(s) just shown
entered in the editor.

(editor) a=3 - 4j, b=real(a), c=imag(a), d=abs(a), e=angle(a)
>> a =

 3.0000 -4.0000i
b =

 3
c =

- 4
d =

 5
e =

- 0.9273
We can also enter a complex number as a=3 -j*4, where * indicates multiplication.

If either i or j has been redefined in an earlier statement, we must again define it to be j = sqrt (- 1)
before using it to generate a complex number.

(editor) f=4; g=9; h=sqrt(f)+j*sqrt(g)
>>h =

 2.0000+3.0000i

1.3.2 Matrices and Vectors

All numeric values are stored in matrices. The single values considered in the above sections
are stored in (1x1) matrices. Single row or single column matrices are called vectors. We enter a
(n x m) matrix (n rows, m columns) by entering the individual matrix term values row by row
within square brackets. We can enter more than one row on a single statement line if we use
semicolons between rows.

(editor) a=[3 4

 2 1]
>>a =

3 4
2 1

EE216:Lab.Man.:AppendixA, p8

(editor) b=[1.5 - 2.4 3.5 0.7; - 6.2 3.1 -5.5 4.1; 1.1 2.2 - 0.1 0]

>> b =

1.5000 - 2.4000 3.500 0.7000
 - 6.2000 3.1000 - 5.5000 4.1000

1.1000 2.2000 - 0.1000 0

Values stored in a matrix can be referenced by an index. All MATLAB indices begin with 1, and
cannot be 0 or negative. You can specify values in a matrix using a single index, or by specifying
its row and column indices.

(editor) b(1)
 >> ans =

1.5000
(editor) e=b(2, 3), f=b([2 3], [1 3]), g=b(2, [3 4])
>> e =

- 5.5000
f =

- 6.2000 - 5.5000
1.1000 - 0.1000

g =
- 5.5000 4.1000

We can also create a matrix by concatenating (joining) several vectors. The vectors used must have
the correct number of rows and columns to make the resulting matrix proper.

 (editor) h=[1 2 3], k=[4; 7], m=[5 6; 8 9]
 >> h =
 1 2 3

k =
 4
 7
m =
 5 6
 8 9

 (editor) n=[h; k m]

>> n =
 1 2 3
 4 5 6
 7 8 9

EE216:Lab.Man.:AppendixA, p9

1.3.3 Vectors

Single-row or single-column matrices are called vectors. Therefore, they are entered like
matrices.

 (editor) a=[3 5 9], b=[3; 5; 9]
 >> a =
 3 5 9

b =
 3
 5
 9

Colon (:) notation can be used to enter a set of equally spaced, sequential numbers.
Variable = start : step : end;

 (editor) c=2:5, d=3:2:9
 >> c =
 2 3 4 5
 d =
 3 5 7 9

This example evaluates the function y = sqrt (x) at samples from 0.5 to 2.0 in steps of 0.25.

 (editor) x=0.5:0.25:2.0;
 (editor) y=sqrt(x);
 (editor) x, y
 >> x =

 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
 y =
 0.7071 0.8660 1.0000 1.1180 1.2247 1.3229 1.4142

Vectors also use indices to reference values. Multiple indices will return multiple values.

(editor) f=[10 5 4 7 9 0]
(editor) g=[2 5 6]; h=f(g)
 >> f =

 10 5 4 7 9 0
 h =

 5 9 0

EE216:Lab.Man.:AppendixA, p10

 Here are more examples of indices, combined with colon notation. Note that a colon by
itself indicates all rows or all columns. How does each output relate to the original matrix?

 (editor) m=[1.5 - 2.4 3.5 0.7; - 6.2 3.1 - 5.5 4.1;
 (editor) 1.1 2.2 - 0.1 0]
 >> m =
 1.5000 - 2.4000 3.5000 0.7000
 - 6.2000 3.1000 - 5.5000 4.1000
 1.1000 2.2000 - 0.1000 0

 (editor) n=m(1:2,2:4), o=m(:, 1:2), p=m(2, :)
 >> n =

1.3.4 Array

Matrices or vectors can also be interpreted as two-dimensional or one-dimensional arrays,
respectively. This is the interpretation that we use in most of our MATLAB applications in EE
216.

1.3.5 Special Number Notation

Two special numbers are provided in MATLAB. They are p and infinity and are given the
notation pi and Inf, respectively. In addition, operations such as 0/0 or sin(infinity) produce
undefined results that is given the notation NaN, which stands for Not a Number.

1.4 Character Strings

In addition to numbers, MATLAB can also store and use text. Text is stored in character
strings. We designate a string (including single characters) with single quotes (‘ ’).

(editor) 'Signal and System Analysis'
>> ans =
Signal and System Analysis

The character strings are stored in arrays with one character corresponding to one array

element. Therefore, we can select a portion of a character string to use or print.

 - 2.4000 3.5000 0.7000
 3.1000 -

5.5000 4.1000

o =
 1.5000 -

2.4000

 - 6.2000 3.1000
 1.1000 2.2000

p =
 - 6.2000 3.1000 - 5.5000 4.1000

EE216:Lab.Man.:AppendixA, p11

(editor) M='MATLAB Character String'
>>M =
MATLAB Character String

(editor) C=M(8:16)
>> C =
Character

1.5 Arithmetic Operations

MATLAB defines all arithmetic operations in matrix terms. Use the command help arith and
help slash to list the arithmetic operators. Note: c\b specifies matrix division (b multiplied by the
inverse of c on the left). Matrix sizes must be appropriate (conformable) for all arithmetic matrix
operations. Examples are provided below.

(editor) a=[1 2; 3 4]; b=[3 1; 7 8]; c=[2 4];
(editor) d=a+b, e=c*a, f=a^2, g=c'
>> d =
 4 3
 10 12
e =
 14 20
f =
 7 10

 15 22
g =
 2
 4
(editor) h=a\b, k=b/a
>> h =
 1.0000 6.0000
 1.0000 - 2.5000
k =

 -4.5000 2.5000
 -2.0000 3.0000

To use an operator on an element by element basis, rather than in a matrix math sense, we use the
modifier ‘.’ It is implicit that scalar multiplication is performed on each element.

EE216:Lab.Man.:AppendixA, p12

 (editor) m=a.*b, n=b./a, o=b.^a
 >> m =
 3 2
 21 32
 n =
 3.0000 0.5000
 2.3333 2.0000

 o =
 3 1
 343 4096

All rules of matrix operations apply when using arithmetic operators.

1.6 Function M-Files

Function m-files are like script m-files except that variable values may be passed into or out of
function m-files. Also, variables defined and manipulated only inside the file do not appear in the
Workspace. The first line of a function m-file starts with the word function and defines the
function name and input and output variables. For example:

 function [z,w] = abcd(x,y)

is the first line of the function m-file abcd.m. The input variables of this function are x and y and
the output variables are z and w. Each input and output is an array or matrix. If the array is
(1x1), then the variable has a single real or complex value. A function m-file name must match
the function name for it to execute. Most will contain the function definition, help file and
function statements. Here is an example of a function m-mile for example.m,

 function [x,y,z] = example(w)
 %EXAMPLE An example of a function. This function
 % computes the square root, the square and
 % the mean of the values in a matrix w.
 x = sqrt(w); y = w.^2; z = mean(w);

An example of calling this function is shown below.

>> w=[1 2 3 4 5]
>> [x,y,z]=example(w);
>> x,y,z
x =

EE216:Lab.Man.:AppendixA, p13

Many functions, such as z = mean(x), are built-in MATLAB functions. However, others are
contained in function m-files in MATLAB toolboxes. A function m-file (or a script m-file) can be
executed as long as it is in the MATLAB path. (See the MATLAB help files or File-Set Path.
Any directory or folder listed is in the MATLAB path.)

1.7 Logical Operations

The logical operations AND, OR , and NOT, are specified by &, |, and ~ , (ampersand, pipe,
and tilde) respectively. These can be used in conjunction with the relational operations
(, , , , , ~)< <= > >= == = to construct arrays of zeros and ones (0 - 1 arrays). The ones correspond
to elements for which the logic operation is true.

 (editor) a=[1 3 2; 4 6 5], b=a>2&a<=5
 >> a =
 1 3 2
 4 6 5
 b =
 0 1 0
 1 0 1
 (editor) c=[1 5 3 4 7 8], d=c>4
 >> c =

 [1 5 3 4 7 8],
 d =

 0 1 0 0 1 1

1.8 Mathematical Functions

MATLAB contains a set of built-in mathematical functions. All of these functions are
applied to arrays on an element-by-element basis. A partial list is given below.

sqrt - square root
real - complex number real part
imag - complex number imaginary part
abs - complex number magnitude or absolute value of a real number
angle - complex number angle
exp - exponential base e
log - logarithm base e
Log10 - logarithm base 10

 1.0000 1.4142 1.7321 2.0000 2.2361
y =

 1 4 9 16 25
z =
 3

EE216:Lab.Man.:AppendixA, p14

The trigonometric functions all apply to angles expressed in radians.

1.8.1 Mathematical Expressions

We can combine arithmetic operations, 0 -1 arrays generated by logical operations, and
mathematical functions into mathematical expressions. Often, these expressions take the form of
equations, although they may also be used in flow control statements. The arithmetic operations
follow the usual precedence rules. Many mathematical expressions require parentheses to
construct the desired sequence of operations within the precedence rules.

 (editor) t=0.1;
 (editor) x=2^t*sqrt(t) -sin(2*t)/3
 >> x =
 0.2727

 (editor) y=2^(t*sqrt(t)) - sin(2*t)/3
 >> y =
 0.9559
We can evaluate a mathematical expression for a set of independent variable values by expressing
the independent variable as a one-dimensional array (vector) and using array operations.

 (editor) f=0:2:4; w=2*pi*f;
 (editor) X=(3 -j*0.1*w)./(1.5+j*0.2*w)
 >> X =
 2.0000 0.1566 - 1.1002i - 0.2956 - 0. 6850i

One important use of a 0 -1 array for signal and system analysis is in the representation of a
piecewise-defined signal with a mathematical expression. Given,

1, 0 1

2,
t t

x
 1 t 2

+ ≤ <
=  ≤ ≤

the script would be,

sin - sine
cos - cosine
tan - tangent
asin - arcsine
acos - arccosine
atan - arctangent
atan2 - four quadrant arctangent
round - round to nearest integer

floor - round
toward

-∞

ceil - round toward ∞

EE216:Lab.Man.:AppendixA, p15

 (editor) t= 0:0.5:2;
 (editor) x=(t+1).*(t>=0&t<1)+2*(t>=1&t<=2)
 >> x =

0 1.0000 1.5000 2.0000 2.0000 2.0000 0

1.9 Flow Control

MATLAB has flow control statements that we can use to repetitively or selectively execute
other statements. The flow control statement affects all statements between itself and an
associated end statement.

1.9.1 For Statement

The for statement permits us to execute the same set of statements repetitively for a designated
number of times. It is equivalent to FOR or DO statements found in other computer languages.
For example, to evaluate the summation 3 1.2

1
() k

k
x t t k

=
= ∑ for 0 0.8t s≤ ≤ at dt=0.2s

intervals and print the results, we can use the statements

(editor) t=0:0.2:0.8; x=zeros(size(t));
(editor) for k=1:3;
(editor) x=x+sqrt(k)*t.^sqrt(1.2*k);
(editor) end;
>> x
x =

0 0.3701 1.0130 1.8695 2.9182

For statements can be nested

(editor) for m=1:3;
(editor) for n=1:4;
(editor) y(m,n)=m+n;
(editor) end;
(editor) end;
>> y
y =

 2 3 4 5
 3 4 5 6
 4 5 6 7

When using a for loop to evaluate large arrays, it is best to define the output variable before the
loop executes. This allows the loop to execute faster, since MATLAB does not have to keep
re-sizing the array.

EE216:Lab.Man.:AppendixA, p16

(editor) t=0:0.5:10; y=zeros(size(t));
(editor) for q = 1:length(t);
(editor) y = t+q;
(editor) end;

1.9.2 While Statement

The while statement is like the for statement except that execution stops when a logic
expression is satisfied. The statements

(editor) n=1;
(editor) while 2*n<5000; n=2*n; end;
>> n
n =

 4096
compute the largest power of 2 that is less than 5000.

1.9.3 If Statement

The if statement permits us to execute statements selectively depending on the outcome of a
logic expression.

(editor) for k=1:4;
(editor) if k==1; x(k)=3*k;
(editor) else if k==2|k==4; x(k)=k/2;
(editor) else; x(k)=2*k;
(editor) end;
(editor) end;
(editor) end;
>> x
x =

3 1 6 2

If statements can be nested.

(editor) c='t'; n=2;
(editor) if c=='f'; c='false'; y=Nan; end;
(editor) d=0.1:0.1:0.4;
(editor) if c=='t';

(editor) if n==2;
(editor) y=10*d(n);
(editor) else;
(editor) y=0;
(editor) end;

EE216:Lab.Man.:AppendixA, p17

 (editor) if n==2;
 (editor) y=10*d(n);
 (editor) else
 (editor) y=0
 (editor) end;
 >> c, y
 c =

 t
y =
 2

1.10 Other Functions and Commands

The functions and commands described here and in other experiments do not encompass all
functions and commands available. To find out about other functions use the lookfor and help
commands.
 help - lists the directories in the MATLAB path which contain functions

 also lists the toolboxes
help directory – lists functions in that directory
help function – displays help file for that function
lookfor word – searches for functions with word in the name or description

1.10.1 Numeric Functions

find(A) Returns a one-dimensional row-array containing the indices of non-zero
 elements of a one-dimensional array. It can be used with 0 - 1 arrays to
 find indices of elements that have other values.

 (editor) a=[1 0 2 3 0 4];b=find(a)
 >>b =
 1 3 4 6
 (editor) n=find(a>2)
 >>n =
 4 6

size(A,i) Returns the number of rows in A if i=1 or the number of columns in A if
 i=2. If i is not included, then a row vector containing both the number of
 rows and the number of columns is returned.

zeros(m,n) Returns an (m x n) array of zeros. A modification iszeros(size(A)) which
 returns an array of zeros having size equal to the size of A.

max(A) Returns the value of the largest element in a one-dimensional array.
 max(max(A)) returns the value of the largest element in a two-dimensional
 array.

min(A) Like max(A) except that it returns smallest values.

EE216:Lab.Man.:AppendixA, p18

mean(A) Returns the mean, or average value, of all elements in a one-dimensional

 array and a one-dimensional row-array containing the mean values of the
 elements in the columns of a two-dimensional array.

meshgrid(A,1:n) Returns an array having n rows where each row is the one-dimensional
 array A.

(editor) d= - 0.1:0.1:0.2; dm=meshgrid(d,1:3
 >> dm =

 -0.1 0 0.1 0.2
 -0.1 0 0.1 0.2
 -0.1 0 0.1 0.2

sum(A) Returns the sum of the elements of A if A is a one-dimensional array.
 Returns a one-dimensional row-array that contains the sums of the columns
 of A if A is a two-dimensional array.

1.11 Plotting Functions and Commands

plot(x,y) Plots the variable y versus the variable x in the current Figure Windowby
connecting data values with straight lines. Two or more functions of the
same independent variable can be plotted on the same set of axes. To do so,
remain in the same Figure Windowand use the statements hold on and
hold off after the first and last plot statements, respectively. By itself, plot
provides only a default scaling and size.

hold on Use after a plot command to draw multiple lines on one axis.

hold off Releases the hold on command.

xlabel('text') Labels the x-axis of a plot with the text specified by 'text'.

ylabel('text') Labels the y-axis of a plot with the text specified by 'text'.

title(‘text’) Places the title specified by 'text' above a plot.

text(x,y,'text') Adds the text specified by 'text' to a plot at the location (x, y), where x and

y are the horizontal and vertical axis coordinates, respectively

Legend Creates a legend for multiple plots on one axis

Figure Opens a new Figure Window

subplot(m,n,ax) Splits the Figure Window into a matrix of MxN axes. Example
subplot(2,1,2) specifies 2 rows of axes, in 1 column, and you are using the
2

nd
 axis.

EE216:Lab.Man.:AppendixA, p19

axis([ranges]) Sets scaling for the x-, y- and z-axes on the current plot according to to the
vector ranges = [xmin xmax ymin ymax zmin zmax]. If only a 2-D is being
used, ranges = [xmin xmax ymin ymax].

In some experiments, you will open a number of Figure Windows and generate a plot in each.
To eliminate one of these plots, click on File - Close when you are in the corresponding Figure
Window. To eliminate all plots, type the command close all in the Command Window.

2.0 Specific Application Information

In Section 2, several function m-files that have been created specifically for signal and
system analysis are presented. On the laboratory computers, these m-files are located in
w:\matlab\toolbox\ee216

2.1 Signal and System Analysis Functions

Two additional function m-files have been created for use in signal and system analyses in
EE216. These functions encompass:

 1. step and ramp signal functions
 2. discrete- and continuous-time Fourier series functions
 3. continuous-time Fourier transform function

All of the functions contain help statements at the beginning. These statements indicate the
function’s purpose, define input and output variables, and, in a few cases, provide useful
modification suggestions and requirements.

2.1.1 Step and Ramp Function

We use step and ramp functions often in signal and system analysis. Therefore, we have
created the MATLAB functions u = us(t) and r = ur(t) to compute them. The values computed
for u are 0 for t<0 and 1 for t>=0. Likewise, the values computed for r are 0 for t<0 and t for t >=0.

2.1.2 Continuous-Time Fourier Series Function

We have created four functions for use in performing Fourier analyses of continuous-time
signals. The first function computes Fourier series coefficients from sample values of a
continuous-time signal. The second function computes samples of the truncated Fourier series
approximation to a signal over a specified time interval. The last two functions compute the
Fourier transform and the inverse Fourier transform, respectively.

2.1.2.1 Fourier Series Coefficients

The function

[Xn,f,ang,No,Fo] = ctfsc(t,x)

EE216:Lab.Man.:AppendixA, p20

computes the Fourier series expansion coefficients Xn corresponding to the portion of the signal x
within the expansion interval t(1) -dt/2 to t(ns)+dt/2. This interval has length ns*dt where
ns=size(t,2) is the number of signal samples and dt is the time interval between samples.

There are ns Fourier series coefficients computed and the frequency interval between these
is fo=1/(ns*dt). Series coefficients are computed for both positive and negative frequencies and
the coefficient X0 corresponding to f = 0 is stored in Xn(No). The values of both No and Fo are
function outputs along with Xn.

The Fourier series expansion interval can begin anywhere between - 10*(ns*dt) to

10*(ns*dt). These limits can be changed, if required, as indicated in the help statements in the
function m-file, ctfsc.m.

2.1.2.2 Truncated Fourier Series

The second Fourier series related function is

[xfs,Xnn] = ctfs(t,Xn,no,fo,N)

This function first selects the 2N + 1 Fourier series coefficients, Xnn, centered on X0, where N is
specified with the input variable N. Then the function computes samples, xfs, of the truncated
Fourier series approximation of x over the time interval specified by the input variable t. The
time interval does not need to be the same time interval as the expansion interval used to compute
the Fourier series coefficients.

The input variables Xn, no, and fo are the output variables obtained from function ctfsc.
This function also plots the Fourier Series. The original function can also be plotted on the same
graph by using the hold on command after ctfs followed by the plot command.

2.1.3 Fourier Transform Functions

2.1.3.1 Fourier Transform

MATLAB contains a built-in function for the Fourier Transform called fft(x). Using this
function requires knowledge of discrete-time concepts which students in this laboratory are not
expected to know. We have therefore written a function which attempts to create the best
approximation possible to a continuous-time Fourier transform. The function

 [f,X,N,no]=ctft(t,x,dfm)

computes the Fourier transform of the portion of the signal x contained in the interval t(1)-dt/2 to
t(ns)+dt/2. This interval has length ns*dt where ns=size(x,2) is the number of signal samples
and dt is the time interval between samples. The signal portion used must begin at t(1)<=0 and
end at t(ns)>0. If the signal is longer than the time interval ns*dt, thenthe computed transform
will have some distortion since it is the transform of the truncated signal.

EE216:Lab.Man.:AppendixA, p21

There are N Fourier transform samples computed, where N equals the larger of

ceil(1/(dfm*dt)) or 2*ns. The variable dfm is the maximum spacing that we will allow between
computed transform samples. Note that care must be exercised in selecting dfm and dt since N
can become very large if they are chosen to be quite small. Transform samples are computed for
both positive and negative frequencies with a spacing of df=1/(N*dt). The transform value at f=0
is stored in X(no). The frequencies at the transform sample points are stored in the output vector
f.

Now we can plot the magnitude and phase of the Fourier Transform using MATLAB’s plot
capabilities. We can use the subplot command to plot the amplitude and angle of the transform on
the same page.

subplot(2,1,1)
plot(f, abs(X));
subplot(2,1,2)
plot(f, angle(X));

Due to complications arising from the fact that we are actually using discrete-time signals
in our computations, the phase of the Fourier transform may sometimes be different from what is
expected. If this happens, first try using the unwrap command before plotting the phase. If the
problem still exists, the problem may be that an insufficient portion of the signal is being included
in the samples. Try extending the length of the samples to include a longer portion of the signal.

2.1.3.2 Inverse Fourier Transform

MATLAB contains a built-in function for the inverse Fourier Transform called ifft(x).
Using this function requires knowledge of discrete-time concepts which students in this laboratory
are not expected to know. We have therefore written a function which attempts to create the best
approximation possible to a continuous-time inverse Fourier transform. The function

[t,x,n]=ctift(f,X,dtm)

computes the inverse x of the Fourier transform X. The input vector f specifies the frequency
interval and sample spacing for the input Fourier transform vector X. These input vectors are
outputs of the function ctft. The number of transform samples is ns=size(X,2) and the number of
inverse transform samples computed, N, is the larger of ceil(1/(dtm*df)) or ns. The variable df is
the spacing between transform samples and the input variable dtmspecifies the maximum spacing
that we allow between computed inverse transform samples. As for the Fourier transform, we
must exercise care in selecting the variables df and dtm so that N does not become excessively
large.

If the magnitude of the transform is an even function of frequency and the phase of the
transform is an odd function of frequency, then the inverse transform should be real. There will
probably be some round-off error present, so in this case you should probably take the real portion
of the inverse transform before plotting. The inverse transform can then be plotted using the
standard MATLAB plot command.

EE216:Lab.Man.:AppendixA, p22

 x=real(x);
 plot(t,x);

2.1.4 Straight-Line Approximate Bode Plot Functions

Straight-line approximations to Bode amplitude response and Bode phase response plots are
convenient in continuous-time system analyses. We have created the two functions, sysdat, and
slbode to compute the parameters for the straight-line approximations and the straight-line
approximation data, respectively. The location of system zeros is not restricted. The functions
are capable of finding the parameters and straight-line data for causal, stable systems (poles only in
the LHP) and non-causal, stable systems (poles in both the LHP and RHP). Also, results for
marginally stable systems can be obtained. These results are valid for input signals that do not
contain poles located at single-order system poles on the imaginary axis

2.1.4.1 Transfer Function Parameter Computation

The function

 [rn,rd,imas,rhps,c,bf,ft,dr]=sysdat(n,d)

computes transfer function, or frequency response, factor parameters for a system having the
transfer function

 H(s)=[n(1)s
a
+...+n(a)s+n(a+1)] / [d(1)s

ß
+...+d(ß)s+d(ß+1)]

or frequency response

 Hω (ω)=[n(1)(jω)
a
+...+n(a)(jω)+n(a+1)] / [d(1)(jω)

ß
+...+d(ß)(jω)+d(ß+1)]

The numerator and the denominator coefficients are stored in the input vectors n and d,
respectively. Function outputs include:

Rn = roots of the numerator (system zeros),

Rd = roots of the denominator (system poles),

Imas = two-element row-vector containing the number of zeros and number of
 poles on the imaginary axis,

rhps = two-element row-vector containing the number of zeros and number of

 poles in the right-half plane,

c = constant multiplicative factor c=n(i)/d(j), where i and j are the largest

 integers for which n(i) and d(j) are not equal to zero,

bf = a row-vector that contains the break frequency for each factor where, for

 linear factors, bf>0, bf=0, and bf<0 indicate LHP, Imaginary Axis, and
 RHP plane poles or zeros, respectively,

EE216:Lab.Man.:AppendixA, p23

ft = a row-vector of factor types where +1 and +2 correspond to numerator
 linear and quadratic factors, respectively, and -1 and -2 correspond to
 denominator linear and quadratic factors, respectively,

dr = a row-vector of factor damping ratios.

A damping ratio only applies to a quadratic factor and is a number greater than zero but less

than one. We set dr(i) equal to 10 for factor i as an indicator that factor i is a linear or j? factor.
Quadratic factors that correspond to LHP, Imaginary Axis, and RHP poles are indicated with
positive, zero, and negative damping ratios, respectively.

Note

: If a factor is of order N, then the data for it will appear as data for N first order factors
at the same break frequency. The data for each of these first-order factors is the same and the
resulting straight-line approximation for the Nth order factor is the sum of the straight-line
approximations for the N first-order factors.

2.1.4.2 Straight-Line Data Computation

We compute the straight-line Bode plot approximation data with the function

[am,ph]=slbode(w,c,bf,ft,dr)

The input variables include vectorw defining the frequency interval and increment for which the
data are computed. The other input variables are the frequency response factor parameters
computed with function sysdat. These are defined in Section 2.1.4.1.

The output variables are the vectors am and ph. These vectors contain the data for the
straight-line approximations to the amplitude-response and phase-response Bode plots,
respectively.

