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Control Systems Laboratory (EE 3321) — Experiment 7 

Motor Transfer Function, Second Order System and PD Controller Design 

I. Introduction 

This experiment uses the model created in the previous experiment to create a positional transfer function for the 

QUBE-Servo.  Additionally, a controller will be designed and implemented that allows for the precise position 

control of the motor. 

II. First Principles Modeling 

The Quanser QUBE-Servo is a direct-drive rotary servo system. Its motor armature circuit schematic is shown in 

Figure 7.1 and the electrical and mechanical parameters are given in Table 7.1. The DC motor shaft is connected to 

the load hub. The hub is a metal disk used to mount the disk or rotary pendulum and has a moment of inertia of Jh . 

A disk load is attached to the output shaft with a moment of inertia of Jd . 

 

FIGURE 7.1 QUBE-SERVO DC MOTOR AND LOAD 

The back-emf (electromotive) voltage ( )be t depends on the speed of the motor shaft, 
m , and the back-emf constant of 

the motor, 
mk . It opposes the current flow. The back emf voltage is given by: 

 ( ) ( )b me t k t   

Symbol Description Value 

DC Motor 

Rm Terminal resistance 6.3 Ω 

kt Torque constant 0.036 N-m/A 

km Motor back-emf constant 0.036 V/(rad/s) 

Jm Rotor inertia 4.0 × 10−6  kg-m2
 

Lm Rotor inductance 0.85 mH 

mh Load hub mass 0.0087 kg 

rh Load hub mass 0.0111 m 

Jh Load hub inertia 1.07 × 10−6  kg-m2
 

Load Disk 

md Mass of disk load 0.054 kg 

rd Radius of disk load 0.0248 m 

TABLE 7.1: QUBE-SERVO SYSTEM PARAMETERS 

Using Kirchoff's Voltage Law, we can write the following equation: 

    
( )

( ) ( ) ( ) 0.m

m m m m m m

di t
v t R i t L k t

dt
      
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Since the motor inductance 
mL  is much less than its resistance, it can be ignored. Then, the equation becomes 

     ( ) ( ) ( ) 0.m m m m mv t R i t k t    

Solving for ( )mi t  the motor current can be found as: 

 
( ) ( )

( ) .m m m

m

m

v t k t
i t

R


   (7.1) 

The motor shaft equation is expressed as 

 ( ) ( ),eq m mJ t t    (7.2) 

where eqJ   is total moment of inertia acting on the motor shaft and 
m  is the applied torque from the DC motor. 

Based on the current applied, the torque is 

 

     ( )m m mk i t    

The moment of inertia of a disk about its pivot, with mass m and radius r, is 

 
21

2
J mr  . (7.3) 

III. Second-Order Systems 

A. Second-Order Step Response 

The standard second-order transfer function has the form 

 
2

2 2

( )

( ) 2

n

n n

Y s

R s s s



 


 
 , (7.4) 

where ωn  is the natural frequency and ζ is the damping ratio. The properties of its response depend on the values of 

the parameters n   and ζ . 

Consider a second-order system as shown in Equation 7.4 subjected to a step input given by 

     0( ) ,
R

R s
s

   

with a step amplitude of R0   = 1.5. The system response to this input is shown in Figure 7.2, where the red trace is 

the output response y(t) and the blue trace is the step input r(t). 
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FIGURE 7.2: STANDARD SECOND-ORDER STEP RESPONSE 

B. Peak Time and Overshoot 

The maximum value of the response is denoted by the variable 
maxy  and it occurs at a time 

maxt . For a response 

similar to Figure 7.2, the percent overshoot is found using 

 max 0

0

100( )y R
PO

R


   (7.5) 

From the initial step time,
0t , the time it takes for the response to reach its maximum value is 

 max 0.pt t t    (7.6) 

This is called the peak time of the system. 

In a second-order system, the amount of overshoot depends solely on the damping ratio parameter and it can be 

calculated using the equation 

 
2/ 1

100PO e
  

   (7.7) 

The peak time depends on both the damping ratio and natural frequency of the system and it can be derived as: 

 
21

p

n

t


 



  (7.8) 

Generally speaking, the damping ratio affects the shape of the response while the natural frequency affects the speed 

of the response. 

C. Unity Feedback 

The unity-feedback control loop shown in Figure 7.3 will be used to control the position of the QUBE-Servo. 

 

FIGURE 7.3 UNITY FEEDBACK LOOP 

The QUBE-Servo voltage-to-position transfer function is 

    
( )

( )
( ) ( 1)

m

m

s K
P s

V s s s


 


  

 

where K = 23.0 rad/(V-s) is the model steady-state gain, τ  = 0.13 s is the model time constant, ( ) { ( )}m ms L t   

is the motor / disk position, and ( ) { ( )}m mV s L v t is the applied motor voltage.  If desired, you can conduct an 

experiment to find more precise model parameters, K and τ , for your particular servo (e.g. performing the Bump 

Test Modeling lab). 
 
The controller is denoted by C (s). In this lab, we are only going to use unity feedback therefore 

     ( ) 1C s    
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The closed-loop transfer function of the QUBE-Servo position control from the reference input ( ) ( )dR s s   to the 

output ( ) mY s    using unity feedback as shown in Figure 7.3 is 

 
2

( ) /

( ) / /

d

m

s K

V s s s K



 




 
  (7.9) 

IV. PD Control 

A. Servo Model 

The QUBE-Servo voltage-to-position transfer function is 

 
( )

( )
( ) ( 1)

m

m

s K
P s

V s s s


 


  (7.10) 

where K = 23.2 rad/(V-s) is the model steady-state gain, τ  = 0.13 s is the model time constant, ( ) { ( )}m ms L t 

is the motor / disk position, and ( ) { ( )}m mV s L v t is the applied motor voltage.  If desired, you can conduct an 

experiment to find more precise model parameters, K and τ , for your particular servo (e.g. performing the Bump 

Test Modeling lab). 

B. PID Control 

The proportional, integral, and derivative control can be expressed mathematically as follows 

 
0

( )
( ) ( ) ( ) .

t

p i d

de t
u t k e t k e d k

dt
      (7.11) 

The corresponding block diagram is given in Figure 7.4. The control action is a sum of three terms referred to as 

proportional (P), integral (I) and derivative (D) control gain. The controller Equation 7.11 can also be described by the 

transfer function 

 ( ) .i

p d

k
C s k k s

s
     (7.12) 

 

FIGURE 7.4: BLOCK DIAGRAM OF PID CONTROL 

The functionality of the PID controller can be summarized as follows. The proportional term is based on the present 

error, the integral term depends on past errors, and the derivative term is a prediction of future errors. 

The PID controller described by Equation 7.11 or Equation 7.12 is an ideal PID controller.  However, attempts to 

implement such a controller may not lead to a good system response for real-world system. The main reason for this 
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is that measured signals always include measurement noise.  Therefore, differentiating a measured (noisy) signal 

will result in large fluctuations, thus will result in large fluctuations in the control signal. 

C. PV Position Control 

The integral term will not be used to control the servo position. A variation of the classic PD control will be used: 

the proportional-velocity control illustrated in Figure 7.5. Unlike the standard PD, only the negative velocity is fed 

back (i.e. not the velocity of the error ) and a low-pass filter will be used in-line with the derivative term to suppress 

measurement noise. The combination of a first order low-pass filter and the derivative term results in a high-pass 

filter, H (s), which will be used instead of a direct derivative. 

 

FIGURE 7.5: BLOCK DIAGRAM OF PV CONTROL 

The proportional-velocity (PV) control has the following structure 

 ( ( ) ( )) ( )p du k r t y t k y t     (7.13) 

where pk  is the proportional gain, 
dk  is the derivative (velocity) gain, ( )dr t  is the setpoint or reference 

motor/load angle, ( )my t is the measured load shaft angle, and ( )mu V t is the control input (applied motor 

voltage). 
 

The closed-loop transfer function of the QUBE-Servo is denoted ( ) / ( ) ( ) / ( )m dY s R s s s  .   Assume all initial 

conditions are zero, i.e., (0 ) 0m
  and (0 ) 0m

  , taking the Laplace transform of Equation 1.4 yields 

    

   ( ) ( ( ) ( )) ( )p dU s k R s Y s k sY s   , 

 

which can be substituted into Equation 7.10 to result in 

   ( ) ( ( ) ( )) ( )
( 1)

p d

K
Y s k R s Y s k sY s

s s
  


  

Solving for Y (s)/R(s), we obtain the closed-loop expression 

 
2

( )

( ) (1 )

p

d p

KkY s

R s s Kk s Kk


  
  (7.14) 

This is a second-order transfer function. Recall the standard second-order transfer function 

 
2

2 2

( )

( ) 2

n

n n

Y s

R s s s



 


 
  (7.15) 
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V. Experimental Procedure 

1. Based on the models already designed in QUBE-Servo Integration and Filtering labs, design a model that applies 

a 1-3 V 0.4 Hz square wave to the motor and reads the servo velocity using the encoder as shown in Figure 7.6. 

 

FIGURE 7.6: APPLYING A STEP VOLTAGE AND DISPLAYING MEASURED AND SIMULATED QUBE-SERVO SPEED 

Create subsystem called QUBE-Servo Model, as shown in Figure 7.6, that contains blocks to model the QUBE- 

Servo system. Thus using the equations given above, assemble a simple block diagram in Simulink to model the 

system. You'll need a few Gain blocks, a Subtract block, and an Integrator block (to go from acceleration to speed). 

Part of the solution is shown in Figure 7.7. 

 

FIGURE 7.7: INCOMPLETE QUBE-SERVO MODEL SUBSYSTEM 

It may also help to write a short Matlab script that sets the various system parameters in Matlab, so you can use the 

symbol instead of entering the value numerically in the Gain blocks. In the example shown in Figure 7.7, we are 

using Rm for motor resistance and kt for the current-torque constant. To define these, write a script like: 

% Resistance 

Rm = 8.4; 

% Current-torque (N-m/A) 

kt = 0.042; 

1.1 The motor shaft of the QUBE-Servo is attached to a load hub and a disk load.  Based on the parameters 

given in Table 7.1, calculate the equivalent moment of inertia that is acting on the motor shaft. 
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1.2 Design the QUBE-Servo Model subsystem as described above. Attach a screen capture of your model and the 

Matlab script (if you used one). 

1.3 Build and run the QUARC controller with your QUBE-Servo model. The scope response should be similar to 

Figure 7.8. Attach a screen capture of your scopes. Does your model represent the QUBE-Servo well? Explain. 

  

(a) Motor Speed (b) Motor Voltage 

FIGURE 7.8: QUBE RESPONSE 

2. Design the Simulink model shown in Figure 7.9. This implements the unity feedback control given in Figure 7.5 

in Simulink. A step reference (i.e., desired position or setpoint) of 1 rad is applied at 1 second and the controller runs 

for 2.5 seconds. 

 

FIGURE 7.9: UNITY FEEDBACK POSITION CONTROL OF QUBE-SERVO 

2.1 Given the QUBE-Servo closed-loop equation under unity feedback in Equation 7.15 and the model parameters 

above, find the natural frequency and damping ratio of the system. 

2.2 Based on your obtained n   and ζ, what is the expected peak time and percent overshoot? 

2.3 Build and run the QUARC controller. The scopes should look similar to Figure 7.10. 



 8 of 9 
 

 

 

  

(a) Position (b) Voltage 

FIGURE 7.10: UNITY FEEDBACK QUBE-SERVO STEP RESPONSE 

2.4 Attach the QUBE-Servo position response - showing both the setpoint and measured positions in one scope - as 

well as the motor voltage. 

Hint: For information on saving data to Matlab for offline analysis, see the QUARC help documentation (under 

QUARC Targets | User's Guide | QUARC Basics | Data Collection). You can then use the Matlab plot command to 

generate the necessary Matlab figure. 

2.5 Measure the peak time and percent overshoot from the response and compare that with your expect results. Hint: 

Use the Matlab ginput command to measure points off the plot. 

3. Design the Simulink model shown in Figure 7.11. This implements the PV controller with a high-pass filter of 

50s/(s + 50). Set the Signal Generator block such that the servo command (i.e., reference angle) is a square wave 

with an amplitude of 0.5 rad and at a frequency of 0.4 Hz. 

 

FIGURE 7.11: PV CONTROL ON QUBE-SERVO 

3.1 Build and run the QUARC controller. The response should look similarly as shown in Figure 7.12. 
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(a) Position (b) Voltage 

FIGURE 7.12: QUBE-SERVO PV CONTROL WITH KP  = 2.5 AND KD  = 0.05 

3.2 Set 2.5pk   V/rad and 0dk  . Keep the derivative gain at 0 and vary pk  etween 1 and 4. What does the 

proportional gain do when controlling servo position? 

3.3 Set 2.5pk  V/rad and vary the derivative gain 
dk  between 0 and 0.15 V/(rad/s). What is its effect on the 

position response? 

3.4 Stop the QUARC controller. 

3.5 Find the proportional and derivative gains required for the QUBE-Servo closed-loop transfer function given in 

Equation 7.14 to match the standard second-order system in Equation 7.15. Your gain equations will be a function of 

n  and ζ . 

3.6 For the response to have a peak time of 0.15 s and a percentage overshoot of 2.5%, the natural frequency and 

damping ratio needed are 32.3n  rad/s and ζ = 0.76. Using the QUBE-Servo model parameters, K and τ , given 

above in the Background section of this lab (or those you found previously through a modeling lab), calculate the 

control gains needed to satisfy these requirements. 

3.7 Run the PV controller with the newly designed gains on the QUBE-Servo. Attach the position response as well as 

the motor voltage used. 

3.8 Measure the percent overshoot and peak time of the response. Do they match the desired percent overshoot and 

peak time specifications given in Step 6 without saturating the motor, i.e., going beyond ± 10V? 

Hint: Use the Matlab ginput command to measure points off the plot and the equations from the Second-Order 

Systems Lab. 

3.9 If your response did not match the above overshoot and peak time specification, try tuning your control gains until 

your response does satisfy them. Attach the resulting Matlab figure, resulting measurements, and comment on how you 

modified your controller to arrive at those results.  


