General Comments:

- Closed Book, Closed Notes, and Comprehensive.
- Equation sheets and Periodic Chart will be included.
- Mainly numerical, but may include definitions, sketches, qualitative answers, etc.
- Formulas, sketched, and steps to answer must be shown for full credit.
- Appropriate units must be given in all answers.
- Unit conversions and words for acronyms will be provided upon request.
- Partial credit will be given.
- No derivations will be included

The following items are allowed during this examination:

- Calculator

The following items are NOT allowed during this examination:

- Notes, books, and cell phones

Review Items (in order of priority):

- Lecture Notes, Quizzes, Homework Solutions, and Handouts.

Examination Content: (10 Problems of which 8 Problems will be Graded)

- Semiconductor Crystal and Junction Physics (2 problems)
- Diode Circuits (1 problem)
- Bipolar Junction Transistors (2 Problems)
- Field Effect Transistors (2 Problems)
- OpAmp Circuits (2 Problems)
- Photodiodes (1 Problem)

Examination Material:

- Electrical Concepts - current, current density, voltage, electric field, Ohm's law, insulators, conductors, resistance, resistivity, conductivity, temperature dependence, and associated units.
- Crystals and Carriers - electronic configuration of atoms, valence electrons, use of the periodic table, bonding types, nearest neighbors, band structure for insulators and semiconductors, valence band, conduction band, energy gap, steady-state and equilibrium conditions, elemental and compound semiconductors (Col IV and Col. IIV), intrinsic and extrinsic semiconductors, carrier concentration vs. $1 / \mathrm{T}$, identification of dopants, donors, acceptors, electrons, holes, p-type, and n-type.
- Charge Carriers - calculations of n_{0} and p_{0} for complete impurity ionization, Fermi levels, compensation, drift current in an electric field, resistivity, resistance, conductivity, mobility, variation of mobility with impurity concentration, diffusion current in a concentration gradient, diffusion coefficient, and Einstein relation.
- Junctions and Diodes - contact potential calculations, energy band diagrams, charge density diagrams, calculations for an abrupt junction ($\mathrm{V}_{\mathrm{o}}, \mathrm{W}, \mathrm{x}_{\mathrm{no}}, \mathrm{x}_{\mathrm{po}}, \mathrm{Q}_{+}$, and Q) in equilibrium and under bias, low-level injection diode equation, geometry and circuit symbol with voltage and current conventions, graphical load line-diode characteristic solutions of operating point, forward-bias qualitative effects (on diode equation) of high-carrier injection and ohmic losses, reverse-bias effect of breakdown, $\mathrm{p}^{+} \mathrm{n}$ and $\mathrm{n}^{+} \mathrm{p}$ junctions, and diode circuits.
- Bipolar Junction Transistor - symbol, structure, terminal names, and IV characteristics for both npn and pnp types; energy band diagrams and carrier specifics for equilibrium and typical bias; current relationships including emitter injection efficiency, base transport factor, current transfer ratio, and gain; design optimization for high gain; regions of the IV characteristic; common-base circuit; common-emitter circuit; common-emitter circuit with R_{e}; Darlington amplifier circuit with 2 transistors; constant current circuit; single biasing source configuration; and emitter follower circuit.
- Junction Field Effect Transistor - symbol, structure, terminal names, and IV characteristics for both n-channel and p-channel JFET types; energy band diagrams and carrier specifics for equilibrium and typical bias; pinch-off voltage and saturation current; design optimization; regions of the IV characteristic; current equations for unsaturated and saturated regions; common-source circuit; source-follower circuit; and self-biasing circuit.
- Metal Oxide Semiconductor Field Effect Transistor - symbol, structure, terminal names, and IV characteristics for both n-channel and p-channel MOSFET types (both depletion-mode and enhancement mode); typical bias conditions; pinch-off or turn-on voltage and saturation current; current equations for unsaturated and saturated regions; and inverter circuit with enhancement-mode and depletion mode MOSFETs.
- Operational Amplifiers - OpAmp model with finite resistances, ideal OpAmp parameters and model, buffer OpAmp circuit, non-inverting OpAmp circuit, inverting OpAmp circuit, multiple input circuits (adders and subtractors), voltage-to-current or current-to-voltage circuits, integrating and differentiating circuits, and multiple stage analysis.
- Optoelectronics - wavelength, frequency, photon energy, phase velocity, refractive index, absorption coefficient, semiconductor absorption, semiconductor emission (injection luminescence), photodiode equation with $\mathrm{I}_{\text {light }}$, photodiode efficiency, photoconductive mode, pin photodiode structure, avalanche photodiode structure (APD), photodiode biasing circuit, LED operation, three requirements for a laser, and laser diode operation.
- Miscellaneous - Semiconductor fabrication (four requirements for a semiconductor device) units of all quantities and \underline{n}_{i} for Si, Ge, and GaAs at RT.
\qquad
\qquad
\qquad

EE 121 FINAL/ADVANCEMENT EXAM III SAMPLE SEMESTER 20XX

CLOSED BOOK
TWO (2) HOUR LIMIT
CALCULATORS ARE ALLOWED
CELL PHONES MAY NOT BE USED

There are 10 problems: please look over the examination to make sure that you have 10 different problems. Do any eight (8) problems! Draw a large X through the two problems that you do not want to be graded. If you do not indicate which problems you want to leave out, the first 8 problems will be graded.

Do all work for each problem only on the page supplied for that problem (you may use both sides). DO NOT, for instance, continue Problem \#3 on the back of Problem \#2. Extra blank paper will be supplied if needed. If extra paper is used, show the additional work for each problem on a separate sheet and staple the extra sheet(s) to the appropriate problems.

\#1	\#2	\#3	\#4	$\# 5$	$\# 6$	$\# 7$	$\# 8$	$\# 9$	$\# 10$

READ THE ENTIRE EXAM BEFORE YOU BEGIN SHOW FORMULAS USED AND STEPS TO ANSWER ANSWERS MUST HAVE CORRECT UNITS PUT A BOX AROUND THE ANSWER

Boltzmann's constant:
Planck's constant
Electronic charge:
kT at 300 K
Free-space permittivity
Relative permittivity
Bandgap energies
$\mathrm{k}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}=8.618 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
$\mathrm{h}=4.136 \times 10^{-15} \mathrm{eV}$-sec $=6.626 \times 10^{-34} \mathrm{~J}$-sec
$\mathrm{q}=1.602 \times 10^{-19} \mathrm{C}$
$\mathrm{kT}=0.0259 \mathrm{eV} \quad$ eV-J conversion $\quad 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$\varepsilon_{\mathrm{O}}=8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm}$
Si: 11.9
Si: 1.12 eV

Speed of Light
Ge: 16.0
Ge: 0.67 eV
$\mathrm{c}=2.998 \times 10^{10} \mathrm{~cm} / \mathrm{s}$
GaAs: 13.1
GaAs: 1.42 eV

1 Consider an abrupt pn junction of crystalline silicon (Si). Side \#1 has ionized phosphorous (P) dopants only at $\mathrm{N}_{1}=10^{16} \mathrm{~cm}^{-3}$ and side \#2 has ionized aluminum (Al) dopants only at $\mathrm{N}_{2}=10^{16} \mathrm{~cm}^{-3}$.

1(a) Identify the junction sides as p-type or n-type. Circle the best choice. (5 pts.)
Side \#1 p-type \& Side \#2 n-type
Side \#2 p-type \& Side \#1 n-type Insufficient information

1(b) Calculate the contact potential V_{o} (for equilibrium) (10 pts.)

1(c) Consider the low-level-injection diode equation. Calculate the reverse-bias voltage for which the current magnitude equals 90 percent of the reverse saturation current. The temperature is 300 K . (5 pts .)

2 For the BJT circuit given let $\mathrm{V}_{\mathrm{BB}}=5.0 \mathrm{~V}, \mathrm{v}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{b}}=5.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=15.0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{c}}=100 \Omega$. Assume the base-emitter turn-on voltage is 0.7 V and $\beta=100$.

2(a) Calculate the base current i_{B}. (5 pts .)

2(b) Calculate the operating point, i.e. the voltage v_{CE} and the collector current i_{C}. (15 pts.)

3 Consider the OpAmp circuit below with $\mathrm{i}_{\mathrm{S}}=1.0 \sin (10 \mathrm{t}) \mathrm{mA}$. Let $\mathrm{R}_{1}=\mathrm{R}_{2}=100 \Omega$.

3(a) Draw the equivalent circuit in which the OpAmp is replaced with the appropriate circuit elements. Assume ideal input and output resistances ($\mathrm{R}_{\text {out }}$ and $\mathrm{R}_{\text {in }}$) and a finite gain A. (5 pts.)

3(b) Calculate v_{o} as a function of t (time). Solve with a finite A and then let A go to infinity. (15 pts.)

4 The Si p-i-n photodiode shown is reverse-biased for source voltage $\mathrm{V}_{\mathrm{S}}=-100 \mathrm{~V}$. The reverse saturation current is 0.050 mA and the quantum efficiency is $\eta=0.70$ for $\lambda=900 \mathrm{~nm}$. Assume the diode voltage $\mid \mathrm{VI} \gg \mathrm{kT} / \mathrm{q}$. The diode voltage and diode current are $\mathrm{V}=-50 \mathrm{~V}$ and $\mathrm{I}=-0.50 \mathrm{~mA}$.

4(a) Calculate the optical power absorbed. (10 pts.)

4(b) Calculate the required resistance. (10 pts.)

