
Lab 2: Introduction to Atmel Studio 7 and Basic I/O Assembly Language Programming

CompEng 3151: Digital Engineering Lab II

Last revised: July 16, 2019 (BJZ, RJS)

Description/Overview

As you have learned about in your lecture course, the AVR microcontroller is an advanced version

minicomputer integrated on a small chip having a processor, memory and programmable input/output

peripherals. The main function of an AVR microcontroller is to provide digital control over any type of system

(electrical, mechanical or automotive), different devices, industrial plants, and most electronic gadgets and

appliances.

All microcontrollers contain flash ROM memory, which is used to store programs that they execute. In order

to create program code and write it to the flash memory, some kind of assembler, compiler, and/or

programmer is needed. In this course, we will use Atmel Studio 7 to write programs, debug them and then

program and run them on the microcontroller board. This lab serves as an introduction to the software and

the AVR Simon Board we will use throughout this course to learn about AVR microcontrollers.

Objectives

Students will:

1) Become familiar with the functionality of Atmel Studio 7 and how to create an assembly project for an

AVR microcontroller

2) Know how to use the built-in debugger and simulator tools to troubleshoot programs

3) Create an Assembly program that uses pushbutton inputs to control LED outputs

4) Implement delay loops/polling loops

Materials Required

● Atmel Studio 7 Installed on PC (ECE CLC Computers will have this)

● AVR Simon Board with a USB cable

Preparation

In order to be successful with this lab, students should review Chapters 2 & 3 in the Mazidi textbook.

Background

Generally speaking, a microcontroller is a "computer-on-a-chip." In addition to the registers file and all the

arithmetic and logic elements (the CPU), the device also incorporates read-only and read-write memory (ROM

and RAM), input/output interfaces (I/O ports), and timers.

Microcontrollers are frequently used in automatically controlled products and devices, such as automobile

engine control systems, office machines, appliances, power tools, and toys.

Architecture

AVR microcontrollers are designed after a Harvard

architecture, i.e., data memory and program memory

are physically separated and signals travel over different

buses.

This is the block diagram of the ATmega324PB chip,

which is the one we will be using throughout the lab. It

is important to mention that in this architecture,

instructions are 16-bits long (2 bytes), but only 8-bits (1

byte) are used for data. Therefore, results and operands

connect to an 8-bit bus that, in turn, connects with

memory and input/output lines. In contrast,

instructions travel on a 16-bit bus, which is connected

with any instruction-related components like the

program memory, the instruction decoder, or the ALU.

Port Modules

The microcontroller interfaces with external hardware through

ports, a collection of wires and registers to send or detect digital

signals. The actual point where hardware and microcontroller

connected physically is known as a pin.

The ATmega324 has bidirectional pins, that is, each one can be

programmed to work as either data input or as data output. To

allow this flexible behavior, they are associated with the three

registers, which form an I/O module.

The ATMega324 has 5 ports, each with 8 I/O pins. Ports are

identified with the letters from A to E. The figure at the left

represents the general structure of any port in the device.

DDRA (Data Direction Register) configures port A through the registers Port A and Pin A. The 8-bit value in

DDR indicates what pins will be used for data input (pin register) and what pins will be used for data output

(port register). Thus, when the appropriate command is issued, Port A gets data from the data bus and writes

it to any pin that has been set as output in DDRA. In a similar way, Pin A gets data from any pin set as an

input in DDRA and writes it to the data bus. All of the ports on the AVR are configured the same way using

DDRA – DDRE.

Instruction Set

The table below summarizes the AVR architecture instruction set:

For more information on what each of these instructions does or how they work, you should refer to your

textbook or the ​Atmel 8-bit AVR Instruction Set​ manual.

Procedure

1) Atmel Studio Tutorial

a. In order to become familiar with the basics of Atmel Studio 7 and its debugging functionality,

you should complete the ​Assembly Programming in Atmel Studio 7 – Step by Step Tutorial​.

2) Delay Loops

a. The code you created during the tutorial was written to toggle all of the LEDs connected to Port

D on and off. After programming the AVR Simon Board with the code in the tutorial, you may

notice that the LEDs don’t seem to turn on and off. They actually are turning on and off but

because of the lack of any delay, the LEDs are flashing very quickly. In order to fix this

problem, you need to create a delay subroutine into your assembly code so you can actually

observe the LEDs flashing on and off. Since a register can only hold a value up to 255, you will

probably need to use nested loops to do this and CALL it when you need to use it.

3) Pushbutton Control of LEDs

a. Up until now, we have statically programmed the LEDs to turn on and off based on switching

PORT D on and off depending on what part of the code it is in. For this last part of the lab, you

should choose four of the push buttons on the board and light up their respective LEDs when

their button is pushed. The LEDs should remain lit for approx. 1 second before turning off.

Deliverables

For this lab, you will submit the three different programs you wrote. Each of these programs should be

thoroughly documented so that someone else who has not completed this activity can follow your code and

understand how your solution works. Make sure each of your programs has an appropriate comment block

at the top of the file (see MST Computer Science Department’s Coding Standards). In future labs, you will be

required to submit a lab report.

Questions/Observations

1. Are the LEDs active low or active high? Did your code use a 0 or a 1 to turn the LED on? Verify your

answer on the Simon Board datasheet to determine whether a logical 0 or 1 turns on the LED.

2. Are the push buttons active low or active high? Did your code use a 0 or a 1 to indicate that a button

has been pushed? (Or, what is the constant value of the button when it is not pushed?) Verify your

answer on the Simon Board datasheet to determine whether a logical 0 or 1 is used to indicate a

button push.

3. On the Simon Board datasheet, list which port pin each LED is connected (for all 9 LEDs).

References

● Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi. 2010. ​AVR Microcontroller and Embedded

Systems: Using Assembly and C (1st ed.)​. Prentice Hall Press, Upper Saddle River, NJ, USA.

● Vasconcelos, Jorge, 2009. ​Brief Guide to the AVR Architectures and the AT90USBkey Demonstration

Board.​ John Hopkins University, Department of Computer Science.

