
Lab 8 - 1

CPE 2211 COMPUTER ENGINEERING LAB

EXPERIMENT 8 LAB MANUAL

Revised: J. Tichenor FS19

DESIGN AND SIMULATION OF A 4-BIT RIPPLE-CARRY ADDER
USING FUOUR FULL ADDERS IN VHDL

OBJECTIVES

 In this experiment you will
 Gain experience with VHDL, and VHDL design tools.
 Gain experience with 4-bit ripple carry adder.
 Use the suite of EDA tools supplied by Altera: Quartus-II and ModelSim.

LAB REPORTS

 The format of lab reports should be such that the information can be used to reproduce the lab,
including what values were used in a circuit, why the values were used, how the values were
determined, and any results and observations made. This lab manual will be used as a guide for
what calculations need to be made, what values need to be recorded, and various other questions.
The lab report does not need to repeat everything from the manual verbatim, but it does need to
include enough information for a 3rd party to be able to use the report to obtain the same
observations and answers. Throughout the lab manual, in the Preliminary (if there is one), and in
the Procedure, there are areas designated by Qxx followed by a question or statement. These
areas will be bold, and the lab TA will be looking for an answer or image for each. These answers
or images are to be included in the lab report. The lab TA will let you know if the lab report will
be paper form, or if you will be able to submit electronically.

PURPOSE

 The purpose of this lab is to become familiar with VHDL. Fully expanded the acronym is
Very High Speed Integrated Circuit (VHSIC) Hardware Description Language. The V comes from
the VHSIC acronym. VHDL is an increasingly important tool in digital design used for automated
specification and testing of digital systems. In this exercise, you will write a VHDL specification
for a full adder and use this full adder component to create a 4-bit ripple-carry adder (RCA). More
specifically, you will be instantiating four full adder components to structurally model the 4-bit
RCA. You will also simulate and test your VHDL “code” using ModelSim.

REFERENCES

 VHDL tutorial, ModelSim user manual http://www.model.com/

Lab 8 - 2

MATERIALS REQUIRED

 ModelSim

BACKGROUND

 In lab7, the VHDL code was generated from the schematic in Quartus II. However, if the
circuit is too large or too complicated to draw, writing the VHDL code is a good option. An
example VHDL specification is given below, along with a function block diagram and symbol
(shown in Figure 1). A portion of the VHDL code for this adder is provided below. To create the
4-bit RCA, the full adder component will be instantiated four times and structurally connected. A
short illustrative example follows for clarification. Figure 1 shows the block diagram of a full
adder with input ports A, B, and carry input, Cin, and output ports Sum and carry output, Cout. File
FA.vhd (shown below) implements the full adder component.

Figure 1: Full adder circuit and symbol.

Full Adder VHDL Code

 The following file shows a portion of the VHDL description of the full adder component. This
is the simplest model of the full adder.

-- FA.vhd : full adder component
library ieee;
use ieee.std_logic_1164.all;

entity FA is

 port(a, b : in std_logic;
 cin : in std_logic;
 cout : out std_logic;
 sum : out std_logic);
end entity FA;

architecture df_FA of FA is
begin
 sum <= ???;
 cout <= ???;
end architecture df_FA;

Lab 8 - 3

 The VHDL statement for calculating “sum” is straight forward, and is just addition of the three
input operands. The Boolean equation for “sum” can be written with the XOR symbol as: sum =
A ⊕ B ⊕ Cin. A carry output is asserted only when two or more inputs are asserted. You will
need to generate the minimized equation for “cout” and insert the VHDL form of this
equation in the FA component.

 Figure 2 shows the structural model of a 4-bit RCA, using four full adders. It has two 4-bit
input ports ‘A[3:0]’ and ‘B[3:0]’ and one carry in input, Cin set to ‘0’. The 4-bit RCA outputs are
depicted as ‘S[3:0]’ and carry out, Cout.

Figure 2: Structural description of 4-bit RCA using four full adders.

 The following file shows a portion of the VHDL description of the structural model of the 4-
bit RCA, using four of the full adder components, shown in the previous VHDL file.

-- file RCA.vhd

library ieee;
use ieee.std_logic_1164.all;

entity RCA is
 port(a, b : in std_logic_vector(3 downto 0);
 cout : out std_logic;
 sum : out std_logic_vector(3 downto0));
end entity RCA;

architecture struct_RCA of RCA is

signal cin: std_logic_vector(3 downto 0);
component FA is
 port(a, b : in std_logic;
 cin : in std_logic;
 cout : out std_logic;
 sum : out std_logic);
end component;

begin
 cin(0) <= ‘0’;

 FA0 : FA
 port map(a(0), b(0), cin(0), cin(1), sum(0));
 FA1 : FA

Lab 8 - 4

 port map(???);
 FA2 : FA
 port map(???);
 FA3 : FA
 port map(???);

end architecture struct_RCA;

 This structural model of a 4-bit RCA instantiates four FA components by “port mapping” them.
The first adder’s carry in is set to ‘0’ as shown above. For the rest of the full adders, the carry
input is the carry output of the previous full adder. Hence, the carries ripple up in this circuit,
which gives it the name, ripple-carry adder. This 4-bit RCA has two input ports ‘a’ and ‘b’ each
of 4-bit widths. You will need to “port map” the remaining three full adder components to
complete the design.

 In short, the sum for the 4-bit RCA is contributed by four full adders and the carry is propagated
from the first through fourth full adder to the output carry port. It is to be noted that the addition
is described as “a ⊕ b ⊕ cin” which means the carry generation in between the additions is taken
into consideration at every step of addition operation.

Simulation with ModelSim

 This section will explain the design of test bench required for simulating the 4-bit RCA
developed in the previous section. The testbench will cycle through all 256 possible combinations
of the 4-bit ‘a’ and ‘b’ inputs, allowing the user to check the accuracy of the outputs. Instead of
writing all the input combinations in the test bench code, a simple for loop is used to generate all
input combinations. Furthermore, an incorrect signal is used to automatically check the output
correctness, such that the designer only needs to look at the final value of incorrect to tell if the
circuit is functioning properly (i.e. at the end of the simulation, if incorrect is ‘0’ then the RCA is
working correctly; otherwise, if the RCA is not working correctly, then incorrect will be asserted
when the output in not correct, and will remain asserted throughout the rest of the simulation).

 You need to write your own testbench to exhaustively test the 8 input combinations of the FA
component. Since there are only 8 combinations, it would probably be easiest to write the eight
combinations sequentially, without using a loop, and check the results manually. For example,

a <= ‘0’;
b <= ‘0’;
cin <= ‘0’;

wait for 50 ns;
a <= ‘0’;
b <= ‘0’;
cin <= ‘0’;
wait for 50 ns;

.
.
.
)

Lab 8 - 5

 To allow the operator to see the output resulting from each set of inputs, a delay of 50 ns is
given between each test using a wait statement. The value of 50 ns is selected somewhat randomly,
since the simulation does not include gate propagation delay.

 Using a testbench is much easier than manually entering each combination by hand. A
testbench also automatically documents your testing procedure for others and allows you to easily
repeat your test as needed in the future. Testbench for RCA is as follows:

-- tb_RCA.vhd : testbench
library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity tb_RCA is
end entity tb_RCA;

architecture testbench of tb_RCA is

component RCA is
 port(a, b : in std_logic_vector(3 downto 0);
 cout : out std_logic;
 sum : out std_logic_vector(3 downto 0));
end component;

signal a, b, sum : std_logic_vector(3 downto 0);
signal cout : std_logic;
signal incorrect : std_logic := ‘0’;
signal input_vec : std_logic_vector(7 downto 0);
signal test_a, test_b, test_sum : std_logic_vector(4 downto 0);

begin

UUT : RCA
 port map(a, b, cout, sum);

a <= input_vec(3 downto 0);
b <= input_vec(7 downto 4);

test_a <= ‘0’ & input_vec(3 downto 0);
test_b <= ‘0’ & input_vec(7 downto 4);
test_sum <= test_a + test_b;

inputs : process
begin

input_vec <= ‘00000000’;
for i in 0 to 255 loop
 wait for 50 ns;

 if (cout /= test_sum(4)) or (sum /= test_sum(3 downto 0)) then
 incorrect <= ‘1’;
 end if;

Lab 8 - 6

 Input_vec <= input_vec + 1;
end loop;

wait;

end process inputs;

end architecture testbench;

configuration cfg_tb_RCA of tb_RCA is
 for testbench

 for UUT: RCA
 end for;

 end for;
end cfg_tb_RCA;

 To this end, it is easiest to also write a simulation macro to control the simulation (i.e. specify
what external and internal signals you wish to view and how long you want to run the simulation).
The simulation macro below views the external I/O, a, b, Cout and sum, the internal Cin signal, and
the testbench incorrect signal. The “run –all” command runs the simulation indefinitely, until a
wait; statement is encountered, like at the end of the testbench. You will need to write your own
simulation macro for testing the FA component. The simulation macro for testing the RCA
component is given below.

-- RCA.do : simulation macro

add wave a
add wave b
add wave cout
add wave sum
add wave :tb_RCA:UUT:cin
add wave incorrect
run -all

 Figure 3 shows a portion of the simulation results should look like for the 4-bit RCA. You can
zoom in and out using the zoom pulldown menu.

Figure 3: Simulation results example.

Lab 8 - 7

PROCEDURE

1. Create a project named lab8.

2. Add existing files including FA.vhd, RCA.vhd, tb_RCA.vhd and tb_FA.vhd in this project.

3. Complete the FA.vhd, RCA.vhd and tb_RCA.vhd.

4. Compile all vhdl files.

5. Simulate tb_FA.vhd. From the Tools pulldown menu select TCL | Execute Macro and
choose the simulation macro you wrote for the FA component (FA.do). This will run the
simulation, and bring up the waveform window where you can view the results.

6. Simulate tb_RCA.vhd. This time choose RCA.do.

7. Once you checked all input combinations and are certain your FA design works correctly,
make a hardcopy of the wave window, and turn this in along with a hardcopy of your
VHDL code, testbench, and simulation macro.

