Appendix B ## Binary to Seven Segment Decoder In- order to utilize the seven segment displays of the Altera DE-2 FPGA board it is important that a generalized module of a seven segment decoder be made. A Seven Segment Decoder takes in 4 inputs and has 7 outputs corresponding to the 7 segment display. The following figure shows the 7 segment display. The truth table that is required for the conversion of the input binary stream into the 7 segment outputs has been given below. | Digit | A | В | C | D | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |-------|---|---|---|---|-------|---|---|---|---|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | 4 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | 5 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | | 6 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 7 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 10 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 11 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 12 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | | 13 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | 14 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | | 15 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | | | | | | | | | | | | | | Above truth table implies for driving the seven segment display. Now depending upon the truth table, using and gates, not gates and other basic logic gates, a schematic can be made in the Quartus-II software as shown in the figure below. Now assign the pins to the input and the output and compile the design and convert it to a symbol so that the symbol can be used in the future modules as well.