
10&11-1

EXPERIMENT NUMBER 10&11

REGISTERED ALU DESIGN

Purpose

Extend the design of the basic four bit adder to include other arithmetic and logic
functions.

References

Wakerly: Section 5.10

Materials Required

 Quartus II and ModelSim

Background

For this lab, you will build a fully-functional registered ALU, like the one shown in
Figure 1. This ALU performs a variety of mathematic operations on inputs and stores all
results in a local register, the accumulator. Mathematic operations are always performed
using the value in the accumulator as one operand and the "input" value as the other
operand. The operations performed by the ALU will depend on the state of the control-
bits, bits 1-8 in Figure 1. For the ALU discussed here, the control bits will allow the user
to (See Figure 5, 6, and 7):

a) select the 4-bit input line or the #0 as one of the ALU operands,

b) add or subtract the value at the input to or from the value in the accumulator,

c) increment or decrement the accumulator,

d) complement the input A,

e) pass the input A straight through,

f) AND or OR A and B together, and

g) shift or rotate the accumulator left or right.

The registered ALU that your TA asks you to build may have slightly different capabilities.

A selector, also known as a multiplexor, "selects" one input and mirrors its value at the
output. For example, for the selector in Figure 2, if S is 0, the output will take on the
value of . If S is 1, it will take on the value of . For the 4-input selector in Figure 3, a
control input of =10 (a binary 2) would select input , and so forth. The inputs, D,

10&11-2

and output Y, could be single- or multiple-bit busses. For our registered ALU, the selector
will allow the user to select between an input value of 0 or the value on the 4-bit input
line.

The specific operations that are implemented by an ALU depend on the functions
required by the designer. Figures 4 through 6 show one possible design of an ALU,
which extends the capabilities of a ripple carry adder by adding a little extra logic at the
inputs. The logic is set up such that if the control input M is ‘1’, the ALU performs a
math operation (add, subtract, increment, decrement), and if M is ‘0’, the ALU performs
a logic operation (AND, OR, complement, or no-change).

The logic block FA stands for Full Adder and is a single-bit adder like you used in the 4-
bit ripple-adder in an earlier lab. Let's say you wanted to extend the functions of this
adder as shown in Figure 5 (assuming A and B are inputs to the ALU, and X and Y are
inputs to the 4-bit adder), adding logic to allow it to decrement the value of input A by 1,
to add inputs A and B, to subtract input B from input A, and to increment the value of
input A by 1.

Figure 5a shows what values would have to be given at inputs X and Y of the adder

to allow it to produce the desired result. For example, A-B=A+B'+1 for 2's complement
numbers, where B' is the one's complement of B. So if we wanted to subtract B for 2's
complement numbers, where B' is the one's complement of B. So if we wanted to subtract
B from A when , we would need to present the 4-bit adder the A, B', and a Cin of 1
(giving a). The problem, then, is to put together logic which allows the 1's complement
of B (B') to be presented at input Y when the control bits . The logic needed to modify
the a single bit of B and present an appropriate value to the added (Y) is shown in Figures
5b-5d. This logic modifies B depending on the value of S3S2 to Decrement A, Add A+B,
Subtract A-B, and Increment A.

The logic in Figure 5 makes up the Arithmetic Extender (AE) shown in Figure 4 –

the little bit of extra logic added between the input B to the ALU and the input Y to the
adder. Similar operations must be performed on the input A using what is called a Logic
Extender (LE – Figure 4). Logic for the Logic Extender is shown in Figure 6. It allows
you to perform the logic operations

The one bit of logic we haven’t given you is the logic needed to modify Cin (Figure
4). Note that the table in Figure 5a shows that specific values of Cin must be presented to

the adder, depending on the operation on wants to perform (the value of S3S2).
Determine the logic needed to present the proper values of Cin for given control inputs

S3S2, keeping track of your work in your notebook.

The last component of the registered ALU is the accumulator (Figure 7). The

accumulator is a register which stores the result of any ALU operations. The accumulator

can be set up so that it can be loaded with a new value, store (keep) an old value, or shift

the current value left or right by one (giving your overall registered ALU one more

capability). Results are stored using 4 D-flip-flops. New values are loaded into the

accumulator with the falling edge of the clock (clk). For the accumulator shown in Figure

7, the accumulator keeps its old value when = 00, is loaded with a new value when

 =01, shifts the old value left by one when =10, and shift the old value right by

10&11-3

one when =11.

So let’s summarize. A registered ALU consists of an arithmetic logic unit and an

accumulator (Figure 1). The input to the ALU comes from and external bus (A) and the
accumulator (B). Our ALU can add or subtract the inputs, add or decrement 1 from the
input A, or can take the current value of the accumulator and shift it right or left by 1.
The operation that is performed on any one clock cycle depends on the values of the
select bits. The arithmetic operations are performed by modifying inputs to the ALU. The
shift operations and load accumulator operations are performed using 1-bit selectors.
Most of the logic needed to construct the registered ALU is given for you. A registered
ALU like this one forms the basis of a microcomputer.

Figure 1. Top-level of registered ALU. Arithmetic operations like add,
subtract, decrement, and increment are performed by the ALU. The
accumulator is set up to perform shift and load operations. The
accumulator serves as one of the inputs to the ALU. The accumulator can
be cleared using an input selector that selects between an external input
and zero.

10&11-4

Figure 2 (a): A 1-bit slice of 4-bit selector in Figure 1.

Figure 2 (b): Bank of 4 Selector shown in Fig 2 (a)

10&11-5

 Figure 3. A 4-bit input selector.

Figure 4. An arithmetic logic unit (ALU). An ALU performs many
arithmetic operations, including add, subtract, increment, and decrement.
This ALU is constructed from a ripple carry adder and some additional logic
that modifies the inputs to the adder. Inputs are modified using a Logic
Extender (LE), an Arithmetic Extender (AE), and some carry-in logic.

10&11-6

Figure 5. Functions implemented by ALU and AE logic. The decrement, add,
subtract, and increment functions can be implemented by modifying the inputs A
and B. The logic needed to modify input B, the logic extender, is given in part (d).

.

10&11-7

Figure 6. Derivation of logic for the Logic Extender (LE).

10&11-8

Figure 7. The accumulator. The accumulator is given the option to store its current value,

load a new value, or shift its current value left or right by one using an input selector as

shown.

Preliminary

Design a four bit ALU with accumulator similar to that of Figure above. Your TA
will provide you with the actual specifications of the ALU or you can use those given in
the background.

Develop a test plan for testing your ALU both during simulation as well as during
hardware verification. Simulation is relatively simple. Supplying inputs for hardware
verification may require some ingenuity on your part! Your test plan should check the
most important combinations of inputs. Another way to think of this is that you should
check the most important paths through the logic circuit. It is usually unreasonable to
check all possible combinations of inputs. For example, our 4-bit add function would
require (4-bits on A + 4-bits on B + Cin=9 bits) =512 combinations! A more

10&11-9

intelligent approach would look only at the most important paths. The adder is made of 4
one-bit adders with 3 inputs: a, b, cin. If you just want to test the functionality of your
circuit (should it work), you only need to show that a one-bit adder works and that the
connections between the adders are good. To fully test a single one-bit adder would
require =8 input combinations:

A B Cin
0000 0000 0

0000 0001 0

0001 0000 0

0001 0001 0

0000 0000 1

0000 0001 1

0001 0000 1

0001 0001 1

To test the connections, you need to test the carries (c1, c2 , and c3) between them. You

could use:

A B Cin

0000 1111 0

0000 1111 1

Note that if any carry is wrong, it will show up in one of the answers for these two
cases. Come up with a similar plan for the other functions of your ALU and show your
test plan to your instructor before the lab.

Procedure
1. Draw your design using Quartus II.

2. Perform a functional simulation on your circuit using ModelSim to verify that it is

operating correctly.

 The values assigned to each input signal are shown below:

Input signal Value

D1 1010

S 1

M 0

S3 1

S2 0

 0

 0

S1 0

S0 1

Clk 100 ps/period

10&11-10

3. Download and verify the design you created and compare its performance to the

simulator predicted performance.
Use Appendix A and perform the pin assignment as the following:

Signal Pin

Cout Green LED4

F3 Green LED3

F2 Green LED2

F1 Green LED1

F0 Green LED0

clk 50 MHz on-board clk

CLPS SW17

Z SW16

M SW15

S3 SW14

S2 SW13

S1 SW12

S0 SW11

 SW10

 SW9

I3 SW3

I2 SW2

I1 SW1

I0 SW0

Questions

1. What logic did you use to generate Cin?

2. Explain your testing plan in the Modelsim. Why did you pick the particular input
combinations you did?

3. Was your design "successful"? Why or why not?

10&11-11

